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G,  (  L.) yield has been increas-Zea mays
ing in the last decades, a result of a combination of 
genetic and agronomic management factors (Duvick 

and Cassman, 1999; Tollenaar and Wu, 1999; Ciampitti and 
Vyn, 2014), which are dicult to analyze alone due to the high 
degree of interaction among them (Duvick, 1997; Tollenaar 
and Lee, 2002). From all management changes, increases in 
plant density and the use of synthetic fertilizer N have been 
two of the main factors responsible for a signicant portion of 
the historical corn yield gains (Duvick, 2005). Plant density 
is the agronomic factor that changed the most in the last few 
decades (Tollenaar and Lee, 2002; Assefa et al., 2017) and N 
represents the most required nutrient for corn (Bender et al., 
2013; Ciampitti et al., 2013), frequently limiting yield (Dhital 
and Raun, 2016; Scharf et al., 2005; Shanahan et al., 2008). 
Modern corn hybrids have been developed with the ability to 
support crowding stress but increasing the dependency to N 
(Ciampitti and Vyn, 2012; Tokatlidis and Koutroubas, 2004). 
However, even in studies involving modern corn hybrids, var-
ied yield responses to plant density (positive, neutral, and nega-
tive) and to N rates are commonly reported, mainly associated 
with complex interactions between the genotype, environment, 
and management practices (G × E × M) (Assefa et al., 2016; 
Hörbe et al., 2013; Koch et al., 2004; Roberts et al., 2012).

Previous research has suggested that agronomic optimal plant 
density (AOPD) for maximizing yield was related to soil depth 
(Barnhisel et al., 1996), elevation (Shanahan et al., 2004), water 
supply (van Averbeke and Marais, 1994) and soil type (Woli 
et al., 2014). Since all above-mentioned studies have reported a 
positive correlation between corn yield and AOPD, it is adequate 
to assume that corn yield level may be used as a proxy to assess 
the optimal plant density, regardless of the yield limiting factors 
(G × E × M), as summarized by Assefa et al. (2016). 

Dierent from yield–plant density, yield–N rate relationship 
is not directly dependent on yield (Arnall et al., 2013; Raun 
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ABSTRACT

Understanding the relationship of corn (Zea mays  L.) yield  
responses to plant density and nitrogen (N) fertilization is critical 
to production decisions. e main objectives of this study were to 
(i) evaluate yield responses to plant density and fertilizer N rate at 
varying yields adjusting models considering a spatial component, 
(ii) perform a validation for the tted models with an indepen-
dent dataset, and (iii) identify key statistical parameters for the 
yield data distribution governing response models. Analyses were 
conducted with information from seven elds with 21 studies 
(one study per yield environment, with three environments per 
eld) conducted from 2009 to 2017 in southern Brazil with geo-
spatial data collected to evaluate yield response to plant density 
and fertilizer N rates (28911 data points) and one additional data-
base with 12 eld studies conducted from 2012 to 2015 in the US 
Midwest (1773 data points). Databases were divided into training 
and validation datasets. Field experiments evaluating both plant 
density and N rate were selected as training dataset. Key research 
ndings were (i) yield–factor response models were dependent on 
yield environment and within a yield environment those mod-
els remained constant regardless the year, country, and hybrid 
for all evaluated elds, (ii) statistical models considering spatial 
correlation of the random errors outperformed those consider-
ing errors independent and identically distributed and, (iii) yield 
distribution with comparable 50% interquartile range and mode 
portrayed similar yield–factor relationship. In summary, tting  
spatial yield–density models considering yield data distribution 
is critical to upscale site-specic models to larger spatial domains.

R. Schwalbert, Agricultural Engineering Dep., Federal Univ. of Santa 
Maria, Rural Science Center, Santa Maria, RS, Brazil; R. Schwalbert, 
T.J.C. Amado, T.A.N. Horbe, L.O. Stefanello, Soil Dep., Federal 
Univ. of Santa Maria, Rural Science Center, Santa Maria, RS, Brazil; 
T.J.C. Amado, Y. Assefa, P.V.V. Prasad, C.W. Rice, I.A. Ciampitti, 
Dep. of Agronomy, Kansas State Univ., 2004 rockmorton Plant 
Science Center, Manhattan, KS 66506. Received 30 July 2017. 
Accepted 5 Jan. 2018. *Corresponding author (rai.schwalbert@gmail.
com, Ciampitti@ksu.edu).

Abbreviations: AONR, agronomic optimum nitrogen rate; AOPD, 
agronomic optimum plant density; BR, Brazil; EONR, economically 
optimum nitrogen rate; HYE, high yield environment; IQR, 
interquartile range; LYE, low yield environment; MYE, medium 
yield environment; RCB, randomized complete block; RMSE, root 
mean square error; US, United States.

Core Ideas
• Corn yield response to plant density and N rate were dependent on 

yield environment.
• Agronomic optimal plant density and N rate were positively cor-

related to yield level.
• Yield to density within a yield environment was independent on 

year, country, and hybrid.
• Similarity in yield frequency data distributions lead to similar yield–

factor responses.
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et al., 2011). e soil N supply, which is highly inuenced by 
seasonal weather conditions and soil characteristics (Ferguson 
et al., 2002), plays a relevant role inuencing yield–N rate 
response (Raun et al., 2011; Scharf et al., 2006). Following 
this rationale, a mass approach (yield goal × constant factor-N 
credit) is inadequate to predict the agronomic optimal N rate 
(AONR) for corn (Scharf et al., 2006). 

A more comprehensive evaluation of corn yield response 
to plant density and fertilizer N rates and how those models 
are inuenced by varying yield environments is crucial to 
corn production. us, the objectives of this study were to: 
(i) evaluate yield responses to plant density and fertilizer N 
rate at varying yields adjusting models considering a spatial 
component, to compare standard statistical models (assuming 
errors independent and identically distributed [i.i.d.]) versus 
models considering spatial correlation of the random errors, 
and (ii) validating the yield–factors (density and N rate) models 
utilizing completely independent datasets (validation data), 
collected from dierent years, locations, and countries (Brazil 
and United States). Since our data were obtained from dier-
ent years (2009–2017), across locations (Brazil and United 
States) and considering geospatial data, totalizing an amount 
of 30684 points, a third objective was pursued with the goal 
to (iii) build a link between yield–density models and the yield 
data frequency distribution through the analysis of statistical 
parameters (e.g., mode, skewness, quartiles) to evaluate those 
as potential indicators of the most probable yield–plant density 
relationship for a given dataset and to evaluate the potential to 
upscale these site-specic models to larger spatial domains.

MATERIAL AND METHODS

Seven eld experiments (with 3 studies per eld, 21 total) 
conducted from 2009 to 2017 in southern Brazil were used in 
this study (Fig. 1A). Experiments were conducted following a 
hierarchical approach. As a rst step, elds were classied in 
yield environments based on the average corn yield of previ-
ous yield monitor information (four prior corn seasons from 
the same eld). Weather information from those years are 
presented in supplemental Fig. S1 (see online version to access 
supplemental material). e yield maps were interpolated using 
a 10 × 10 m grid size resolution and overlapped. Yield average 
of each pixel was calculated. From this step, three yield envi-
ronments were identied and classied as low (<10 Mg ha–1), 
medium (10 and 13 Mg ha–1), and high (>13 Mg ha–1). Yield 
environment classication was performed following the synthe-
sis–analysis for corn yield response to seeding rates performed 
by Assefa et al. (2016). Seeding rate by fertilizer N studies were 
established in each yield environment. us, each eld presented 
three complete studies considering all yield environments.

Seven research studies were grouped according to the known 
source of variation. For Group I, two site–years per yield envi-
ronment (6 total) were represented by studies portraying a strip-
design with a factorial arrangement (seeding rate× fertilizer 
N rate), conducted during two growing seasons, 2014–2015 
and 2016–2017, with three replications. e treatment levels 
for the seeding rate were 56,000; 64,000; 72,000; 80,000; and 
88,000 plants ha–1 (P1630H, Pioneer hybrid) and the fertilizer 
N rates were 0, 60, 120, 180, and 240 kg N ha–1 (Urea, 46% 
N). All the plots received 20 kg N ha–1 at planting (except for 

the control). For fertilizer N rates lower than 120 kg N ha–1, all 
N was applied at the V4 stage; for the rest of the N, 120 kg N 
ha–1 was applied at V3 and the remainder at the V7 stage. For 
Group II, three site–years per yield environment (9 total), were 
represented by the single-factor plant density, conducted dur-
ing three growing seasons: 2009–2010 (P30F53), 2010–2011 
(P30F53), and 2016–2017 (P1630H); all studies presented a 
randomized complete block (RCB) design with four replications. 
Plant density levels were equivalent to the ones evaluated in the 
Group I and for all treatments a total fertilizer N was applied at 
200 kg ha–1 (Urea, 46% N). For Group III, two site–years per 
yield environment (6 total), were represented by the single-factor 
fertilizer N, conducted during two growing seasons, 2014–2015 
and 2015–2016; all studies were arranged in a RCB design with 
four replications, using the same fertilizer N rates (same N source 
and timing of application), and hybrid relative to Group I. For 
both hybrids used in this study (P1630H and P30F53), the 
recommended AOPD ranged from 70,000 to 80,000 plants ha–1 
for the study region, with a thermal time requirement of approxi-
mately 830 growing degree-days. e hybrid P1630H possessed 
herbicide tolerance and resistance to feeding from certain 
aboveground insects (Cry1F protein from Bacillus thuringiensis).

Table 1 presents descriptive information for each eld exper-
iment conducted in Brazil. Plot size was 30  × 100 m, present-
ing 0.5-m row spacing. Plots were uniformly fertilized with all 
the recommended nutrients for their respective growing region. 
At harvest, yield was recorded aer hybrids achieved physi-
ological maturity, through mechanical harvest using a combine 
equipped with grain yield sensor. Corn yield was recorded 
using a data logger and it was adjusted to 155 g kg–1 moisture. 
e smaller experimental unit was the plot, within the yield 
environment and within a block. In each plot, multiple values 
of yield were registered and treated as pseudo-replications dur-
ing the statistical analysis to avoid a degree of freedom overesti-
mation (Crawley, 2014).

e data from the group I constituted the ‘training-data’ (two 
site–years evaluating both density and fertilizer N rate, 6 stud-
ies total). Data collected from Groups II and III were employed 
for validation purposes, herein termed as ‘validation-data’ [ve 
site–years, three for density (9 studies) and two for fertilizer N 
rate (6 studies), 15 studies total]. Data grouping into training 
and validation datasets was necessary to test model replicabil-
ity irrespective of the dierence between the two datasets in 
space, time, and hybrids. Additionally, a dataset comprising 
1773 observations related to plant density trials for corn hybrids 
(Assefa et al., 2016) conducted from 2012 to 2015 in 5 states in 
the United States was utilized for validation purposes (Fig. 1B). 
e yield environment classication for the dataset from the 
United States was done among elds, instead of within a eld, 
since within-eld spatial variability was not available in those 
trials like the ones utilized from Brazil (Groups I, II, and III). 
e US database was collected from studies performed in small 
plots, 3.0 m × 5.4 m long (0.76-m row spacing). us, data col-
lected from individual experiments were entirely classied in low, 
medium or high yield environment based on their mean corn 
yield per site.
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Statistical Analyses

Descriptive analyses such as minimum, maximum, standard 
deviation, mean and mode were conducted using R soware 
(R Core Team, 2017) for both training and validation data. 
Yield variation accounted by known factors such as fertilizer 
N rate, plant density, yield environment, location, and interac-
tion among these factors and unknown factors for training 
data was estimated using the R-package “varComp” (Long, 
2015). Hierarchal approaches were followed for data analyses; 
at rst, overall yield response models were built individually 
for plant density and N rate. In this step, the analyses were run 
rst considering plant density as a xed eect and the remnant 
sources of variation as random, and second, considering N rate 
as a xed eect and the remnant factors as random. Linear 
quadratic and quadratic-plateau models were tted to the least 
square means (adjusted data) to identify the best model that 
explains the overall (global) yield–factor relationships.

As a second step, the yield–factor relationship was evalu-
ated by yield environment. For this purpose, the signicance 
of the N rates × yield environment, and plant densities × yield 
environment interactions were analyzed via ANOVA with a 
mixed model. Plant density, N rate, yield environment, and 
their respective interactions were considered as a xed eect, 
with block nested into the yield environment factor considered 
as random eects. e random error was considered potentially 
correlated under two covariance models: a random block (RB) 
model, and then a random block model plus spatial (SP) correla-
tion of errors (RB + SP). For the RB + SP. models, exponential, 
Gaussian, and spherical correlation functions were evaluated 
using the “nlme” R-package (Pinheiro et al., 2017). ese mod-
els [RB, RB + SP(Exp), RB + SP(Gau), RB + SP(Sph)] were 

adjusted with homogeneous and heterogeneous variances for the 
dierent yield environments. Model selection for the correlation 
structure was done following the Akaike information criteria 
(AIC). When comparing homoscedastic and heteroscedastic 
models, Likelihood Ratio Test (LRT) was used.

e statistical model took the following form:

Yijk  =  + Ni  + Pj  + YEk  +  B(YE)l(k)  + NxP(ij)  + 
NxYE (ik) +  PxYE(jk)  +  NxPxYE(ijk)  + ER(il)k  + 
EC(jl)k+ ωijkl + εijklm  [1]

where Yijk represents the response variable (corn yield) ;  repre-
sents the overall mean; Ni represents the N rates ranging from i to 
n; Pj represents the plant density ranging from j to p; YEk repre-
sents the yield environment ranging from k to q; B(YE)l(k) rep-
resents the block eect ranging from l to s nested in the kth yield 
environment; NxPij, NxYEik, PxYEjk and NxPxYEijk represents 
the xed eect interactions; ER(il)k represent the row error term; 
EC(jl)k  represents the column error term, ωijkl represent the ran-
dom error in the plots; and, εijklm represents the random error of 
the repeated measures. ωijkl  and εijklm were potentially considered 
to be spatially correlated. Location was considered as the block 
eect since this factor did not improve model t but, if consid-
ered, added a higher degree of parameters and complexity to the 
overall response model. Similar models were used for Peralta et al. 
(2015), Peralta et al. (2016), and Córdoba et al. (2016).

When statistical interactions were documented, linear, 
quadratic and quadratic-plateau models were tted to the 
least square means to identify the best models that explain the 
yield–factor relationship within a yield environment.

Fig. 1. Spatial geographical distribution for the seven studies performed in Brazil, Rio Grande do Sul state (A), and for the data collected from 
the United States, coming from five states: Nebraska, Iowa, Illinois, Indiana, and Ohio (B).
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e third and fourth steps were the validation analysis; rst, 
the validation data (not used in the models) was superimposed 
on the overall models and, second, it was superimposed on the 
specic environment models. Linear and quadratic models 
were tted to the validation data to get regression coecients.

To verify if training and validation datasets were described 
by the same mathematical model or if two models would be 
necessary, the following approach was pursued: training and 
validation datasets were merged in a new data frame and a 
dummy variable (ID) was added to the data frame to dierenti-
ate them (a new column in the data frame). e yield–plant 
density models were tted considering corn yield as a dependent 
variable, plant density as an independent continuous variable 
and ID as a categorical independent variable. e yield–N rate 
models were tted considering corn yield as a dependent vari-
able, N rate as an independent continuous variable and ID as a 
categorical independent variable. Interaction terms among the 
coecients and ID were added, aiming at forcing the model to 
estimate one coecient to each dataset (training and valida-
tion). Four dierent models were tested: (i) training and valida-
tion data with the same angular coecient, but dierent linear 
coecients and intercepts (just one interaction term between 
angular coecient and ID), (ii) training and validation data 
with the same linear and angular coecients but dierent inter-
cepts, (iii) training and validation data with the same linear, 
angular coecients and intercepts (without interaction term), 
and (iv) training and validation data with dierent linear, 
angular coecients and intercepts (interaction terms between 
angular coecient and ID, linear coecient and ID, and inter-
cept and ID). It allowed us to verify if one or two models would 
be needed and, if two models were needed, what coecients 
would dier between those models. e coecient comparison 
is also important because two models could have the same shape 
(equal linear and angular coecients) and dier only in the 
intercept. e models were compared using the AIC.

RESULTS

Overall Corn Yield Responses  

to Plant Density and Fertilizer N Rates

For the training data (six studies total, two elds), corn yield 
ranged from 5.1 to 19.8 Mg ha–1, and was not normally dis-
tributed (W = 0.97,  < 0.001), presenting a negative skewness p
(-0.51) with mean of 12.5 Mg ha–1 and mode of 12.6 Mg ha–1. 
Among the known sources of variation for yield, fertilizer N 

rate accounted for 9% and plant density for 4%. e propor-
tion of the variance explained by these factors substantially 
increased when the interactions with yield environment were 
considered in the analysis. Following this rationale, the analy-
sis by yield environment was pursued with the main goal of 
improving the understanding of yield responses to the factors 
evaluated in this study.

Yield variance was explained by two overall models sepa-
rately considering plant density and N rate as xed eects. 
Averaged across all variables (fertilizer N rates, location, yield 
environments, and blocks), yield response to plant density 
varied signicantly following a quadratic model (Fig. 2). e 
AOPD, represented by the rst derivative equal to zero, was 
approximately 82,000 plants ha–1  (Fig. 2A). us, as plant 
density increased from 56,000 to 82,000 plants ha–1 , yield 
improved from 11.2 to 12.1 Mg ha–1, respectively. Yield 
response to N fertilization also followed a quadratic-plateau 
model. e minimum yield was 10.1 Mg ha–1 with 0 kg N ha–1 
and the maximum yield was 12.5 Mg ha–1  with 160 kg N ha–1, 
corresponding to the AONR. When the N rate overpassed 
160kg N ha –1, yield reached a plateau (Fig. 2B).

Despite the signicant trends in yield response to plant den-
sity and N rates, important variability was observed for yield 
within each level of those factors (Fig. 2C and 2D). e latter is 
explained since those models did not take into account possible 
interactions between the factors and the yield environments, 
and because the plots were large enough to allow that multiple 
values of yield (pseudo-replicates) were recorded in each condi-
tion, which contributes to increasing the variability for the 
response variable.

Yield–Factor Responses by Yield Environment

Corn yield response to plant density and N fertilization was 
evaluated based on three yield environments dened accord-
ing to four previous years of corn yield data (2002/2003, 
2006/2007, 2009/2010 and 2012/2013 seasons) collected 
from the same eld (Fig. 3A). For the low yield environment 
(LYE), average yield for those past growing seasons was 7.7 Mg 
ha–1 with a mode of 6.8 Mg ha –1; for the medium yield envi-
ronment (MYE), overall yield was 10.3 Mg ha–1 with a mode 
of 9.1 Mg ha–1; and for the high yield environment (HYE), 
average yield was 14.2 Mg ha–1 with a mode of 12.4 Mg ha–1 
(Fig. 3B).

Training data was categorized based on the geographi-
cal position of each plot within the elds according to the 

Table 1. Characterization of eld studies conducted in Brazil related to city/county, average temperature and precipitation during the 
growing season, organic matter content, clay content, pH, year of study, and soil type for each site–year.†

Source  
variation

City/
County Temp (°C) Precip. (mm)

OMC  
(g kg–1 )

Clay content 
(g kg–1) pH Year

Soil taxonomy 
subgroups

Training 
data

PD NMT 28 1254 32 480 5.7 2014–2015
PD NMT 27 1232 32 470 5.9 2016–2017
NR NMT 28 1254 32 510 5.6 2014–2015
NR NMT 27 1232 32 460 5.8 2016–2017

Validation 
data

PD NMT 29 1185 34 480 5.8 2009–2010 Rhodic Hapludox
PD 28 921 31 520 6.0 2010–2011VG
PD NMT 27 1232 32 470 5.9 2016–2017
NR 29 1054 28 510 6.1 2014–2015CA
NR 27 1350 31 500 6.1 2015–2016CA

† PD = plant density, NR = nitrogen rate, OMC = organic matter content, NMT = Não-Me-Toque, VG = Victor Graeff, CA = Carazinho.
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previously dened yield environments. For the training data, 
LYE presented a mean yield of 8.3 Mg ha–1 with a mode of 
8.5 Mg ha–1; MYE presented an overall yield of 12.5 Mg ha–1 
with a mode of 11.6 Mg ha–1; and HYE presented a mean yield 
of 14.5 Mg ha–1 with a mode of 15.5 Mg ha –1 (Fig. 3C). For 
the training dataset, the number of observations allocated to 
each evaluated factor for each yield environment is provided in 
Table 2.

Signicant yield environment by plant density and yield 
environment by fertilizer N rate interactions were documented 
(Table 3). Yield environment alone explained 65% of the varia-
tion in corn yield. e 35% remnant of corn yield variation 
was accounted for N fertilization and fertilizer N by yield 
environment interaction (12%), plant density, and plant density 
by yield environment interaction (8%), and unknown factors 
(15%). Furthermore, the random errors were spatially corre-
lated through an exponential structure, and the variance was 
considered heterogeneous across the yield environments. e 
model selection was based on (i) the smallest AIC and (ii) the 
LRT, which indicated that the heteroscedastic model was sig-
nicantly dierent from the model considering homogeneous 
variance among yield environments (Table 3).

Since each factor presented a consistent interaction with 
yield environment, the yield–factors relationship was dissected 
by yield environments. For the yield–density relationship, the 
LYE followed a negative linear trend with yield decreasing at 
a rate of 23 g plant–1 (slope) with each unit of plant density 
increasing from 56,000 to 88,000 plants ha–1 (Fig. 4A). e 
maximum yield achieved was 8.6 Mg ha–1 with a minimum 
of 7.9 Mg ha–1. For the MYE, yield-to-density relationship 

followed a quadratic model with a relatively rapid growth 
region up to 76,000 plants ha–1 followed by a slow growth 
region. In this environment, the maximum yield of approxi-
mately 13.3Mg ha–1 was attained at about 88,000 plants ha–1 
(Fig. 4B). For the HYE, yield-to-density presented a linear 
positive model with a yield ranging from 13.6 to 15.3 Mg ha–1; 
and plant density ranging from 56,000 to 88,000 plants ha–1. 
e HYE followed a positive linear trend with yield increasing 
at a rate of 54 g plant–1 (slope) with each unit of plant density 
increasing from 56,000 to 88,000 plants ha–1 (Fig. 4C).

For the yield–N rate relationship, all yield environments fol-
lowed a quadratic-plateau trend (Fig. 4D-F). Yield in the LYE 
increased from 6.8 to 8.7 Mg ha–1 when N rate increased from 
0 to 131 kg N ha–1, plateauing aerward. In the MYE cluster, 
as the fertilizer N rate increased from 0 to 165 kg N ha–1 , yield 
improved from 11.1 to 13.6 Mg ha–1 followed by a plateau. 
Lastly, for the HYE, yield improved from 12.2 to 15.5 Mg ha–1 
as the fertilizer N rate increased from 0 to 177 kg N ha–1 also fol-
lowed by a plateau at higher (>177 kg N ha–1) fertilizer N rates.

Overall Model Validation

e validation datasets (ve site–years, 15 studies total) 
were superimposed on the overall yield–factor (training data) 
(Fig.5A and 5B). For plant density validation, two dierent 
datasets were utilized (Brazil and United States). In the valida-
tion dataset from the US, corn yield ranged from 1.4 to 17.9 
Mg ha–1, negative skewed (-0.69) with a mean of 11.8 Mg ha–1 
and a mode of 13.3 Mg ha–1. In the validation data from Brazil, 
corn yield ranged from 6.7 to 17 Mg ha–1, presenting a negative 
skewness (-0.36) with a mean of 12.2 Mg ha–1 and a mode of 

Fig. 2. Overall model for grain yield response to plant density (A) and to nitrogen rates (B). Vertical bar on each data point in the graph is the 
standard error. Frequency distribution of the plant density levels (C) and nitrogen levels (D) for training data.
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13.3 Mg ha–1 (Fig. 5C). For yield–N rate model validation, only 
the dataset from Brazil was utilized (2 site–years, 6 studies total). 
In this dataset, yield ranged from 4.9 to 16.2 Mg ha–1, present-
ing a negative skewness (-0.54) with a mean of 12.0 Mg ha–1 , a 
median of 12.6Mg ha–1 and a mode of 14.0 Mg ha –1 (Fig. 5D). 
None of the datasets presented a normal distribution (p  < 0.01).

e root mean square error (RMSE) of the validation data 
from United States and Brazil for the yield–density model was 
2.5 Mg ha–1 and 2.7 Mg ha–1, respectively. For the N valida-
tion data, the RMSE was 2.6 Mg ha–1 relative to the predicted 
mean. ese RMSEs are within the range of the standard devi-
ation of the yield factor that was close to 2.9 Mg ha–1. e over-
all yield–density relationship did not change among the three 
dierent datasets. All regression models presented statistically 
the same intercept, linear and angular coecients (Table4). 
Similar output for regression models was documented for the 
overall yield–N rate relationship, without dierence among the 
coecients according to the AIC.

Site-Specic Model Validation

Validation data were classied by yield environment following 
the same criteria implemented to the training data (Fig. 3A). All 

data were superimposed on the site-specic yield–factor models 
(Fig. 6). For the yield–density relationship in the LYE, the vali-
dation data from Brazil followed a similar trend despite dier-
ences in the yield levels (slightly superior yields at lower plant 
densities) (Fig. 6A). Otherwise, MYE and HYE models pre-
sented high predictability power (Fig. 6B, C) without presenting 
dierences between regression coecients between the training 
and validation data from Brazil (Table 4). High goodness of t 
was also documented when the United States validation data 
were superimposed on the site-specic yield–density models, 
with no dierences in the regressions coecients at any yield 
environment. Furthermore, for the yield–N rate relationship the 
validation data followed the same trend as the model (training 
data) in the MYE (Fig. 6E), and only presented a dierence in 
the intercept for the LYE and HYE (Fig. 6D and F).

DISCUSSION

Advances in corn breeding have improved the ability of plants 
to use resources more eciently and better tolerate crowding 
stress (Duvick and Cassman, 1999; Tollenaar and Wu, 1999). 
Consequently, modern corn hybrids have become more respon-
sive to variations in plant density and N rates (Ciampitti and 

Fig. 3. Framework of yield environment classification based on past-season corn yield data and experiment locations (A). Boxplot of yield 
derived from training data experiments (B), and boxplot of yield data derived from validation data experiments (C). For boxplot (B, C), the 
lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the 
hinge to the largest value no further than 1.5 x IQR (inter-quartile range) from the hinge. HYE = high yield environment, MYE = medium 
yield environment, LYE = low yield environment, and YEs = yield environments.
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Vyn, 2012). A positive yield response to plant density and fertil-
izer N rate was documented in this study, with an optimal value 
maximizing productivity. Corn yield response to plant density is 
expected to follow a quadratic model (Assefa et al., 2016; Sangoi 
et al., 2002; Stanger and Lauer, 2006; Van Roekel and Coulter, 
2011), with four major regions of slopes (Assefa et al., 2016) 
i.e., (i) relatively rapid increase, (ii) slow increase, (iii) no (zero) 
increase, and (iv) decrease, as plant density progresses from low 
to high values. Higher plant density leads to increases in intra-
specic competition for resources and decreases on individual 
plant yield (Li et al., 2015; Maddonni and Otegui, 2004; Sangoi 
et al., 2002), inuenced by decreases in both kernel number and 
weight (Li et al., 2015; Sangoi et al., 2002). Yield response to 
plant density is determined by a balance between the reductions 
in per-plant yield and the gains in per-unit-area yield due to the 
additional plants. e AOPD is achieved when a perfect tradeo 
between the per-plant yield reduction and canopy–scale yield gain 
is reached.

Corn yield response to fertilizer N rates usually presents a 
positive trend when the soil N supply is inadequate for maxi-
mum yield, primarily increasing yield via impact on kernel 
number and weight (Ciampitti and Vyn, 2011; Moser et al., 
2006; Rossini et al., 2012). However, dierent from the yield–
plant density relationship, yield–N rate relationship is not 
expected the occurrence of a decreasing region immediately aer 
plateauing, but remaining stable as N rate increases. Increments 
in N rate aer this point increases in per-plant N uptake (and 

plausible in plant N concentration), but with low or no improve-
ment in per-plant yield (Ciampitti and Vyn, 2012). us, a 
quadratic-plateau model has been documented as the best t 
to the yield–N rate relationship (Cerrato and Blackmer, 1990; 
Roberts et al., 2012; Scharf et al., 2005). Decreases in yield could 
be expected for extreme high fertilizer N rates (e.g., more than 
280 kg N ha–1 with yields below 10 Mg ha–1) (Eck, 1984).

In this study, both plant density and N rates positively 
impacted yield, but no interaction was documented. e lat-
ter outcomes are in agreement with several others studying 
plant density and N rates in corn (Al-Kaisi and Yin, 2003; 
Blumenthal et al., 2003; Bruns and Abbas, 2005; Ciampitti 
and Vyn, 2011; Ping et al., 2008; Shapiro and Wortmann, 
2006). Since plant N uptake is known to be correlated 
with corn yield (Ciampitti and Vyn, 2012; Setiyono et al., 
2011), and increases in plant density are normally associated 
with increases in yield (Sangoi et al., 2002; Tokatlidis and 
Koutroubas, 2004), the logical explanation for the nonsigni-
cant plant density by N rate interaction relies on an increase 
in N recovery eciency (kg increases in N uptake per kg N 
applied). Ciampitti and Vyn (2012) in a review of 100 studies 
involving plant density and N rate documented low variation 
in the plant N uptake (g N plant–1) as plant density increases; 
therefore, per-unit-area N uptake (kg ha–1) rises as plant den-
sity increases. When plant density resulted in increases in corn 
yield, increases in N recovery eciency have also been reported 
(Shapiro and Wortmann, 2006; Yan et al., 2017).

Fertilizer N rates (0–240 kg ha–1) more eectively improved 
yields as plant density increased (56,000–88,000 plants ha–1). 

Table 2. Number of data points in datasets used as training data 
and validation data. Low yield considered < 10 Mg ha–1, medium 
yield considered from 10 to 13 Mg ha–1, and high yield considered 
> 13 Mg ha–1.

Training data

Factor Level

Number of data points  
into each yield environment

Low yield Medium yield High yield

N rate (kg ha –1)

0 653 732 635
60 733 886 1,180

120 722 1073 1,192
180 713 913 1,215
240 725 1,049 1,258

Plant density
(plants ha–1)

56,000 653 920 850
64,000 675 910 1,163
72,000 727 829 1,178
80,000 712 985 1,147
88,000 735 930 1,119

Validation data

Factor Level

Number of data points 
 into each yield environment

Low yield Medium yield High yield

N rate (kg ha –1)

0 359 345 450
60 358 391 494

120 352 402 484
180 358 407 486
240 349 396 485

Plant density
(plants ha–1)

56,000 547 583 672
64,000 568 581 681
72,000 561 584 685
80,000 548 591 669
88,000 552 602 692

Table 3. Model selection based on Akaike’s Information Criterion 
(AIC) (the lower the better). Likelihood Ratio test was used to 
check if heteroscedastic component added to model was signi-
cant. Bottom section of the table is the analysis of variance of the 
effect of nitrogen rate, plant density and yield environment for 
the best model selected (heteroscedastic model considering er-
rors spatially correlated through an exponential structure).

Model selection

Models† AIC
p-value for Likelihood 

Ratio Test
RB 11,361.60 –
RB + SP(Exp)‡ 10,657.83 –
RB + SP(Gaus) 10,680.56 –
RB + SP(Sph) 10,884.96 –
RB_H 11,332.05  < 0.001
RB + SP(Exp)_H 10,574.20  < 0.001
RB + SP(Gaus)_H 10,593.22  < 0.001
RB + SP(Sph)_H 10,787.77  < 0.001

Analysis of variance
Source of variation Prob. > F value
Fertilizer N rate  < 0.001
Plant density  < 0.001
Yield environment  < 0.001
Fertilizer N rate × Yield environment 0.002
Plant density × Yield environment 0.001
Fertilizer N rate × Plant density 0.935
Fertilizer N rate × Plant density × Yield 
environment 0.923
† RB = random blocks; H = heteroscedastic.
‡ RB + SP: random block model plus spatial correlation of errors; 
Exp = exponential–; Gau = Gaussian; Sph = spherical
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is is in accordance with other studies involving the same 
production factors in corn (Ciampitti and Vyn, 2011; Shapiro 
and Wortmann, 2006). Two main reasons can explain the pat-
tern above: (i) considering the lowest N rate and plant density 
level, it is more likely that soil N supply limited corn yields; 
and (ii) the strong interaction between plant density and yield 
environment was documented (Table 2). For plant density, 
yield–density relationship presented a change in the response 
trend from negative to positive, from low to high yielding 
environments. However, N rate did not present the pattern 
visualized in the yield–density model, but only a change in the 
model t (shape) and consequently AONR was documented. 
e change in response trend possibly acted as a buer in the 
overall yield–density relationship because of the antagonistic 
corn yield response in HYE and LYE. Increases in corn yield in 
HY were balanced to decreases in LYE conducting to a less step 
corn yield response to plant density in the overall model.

Corn yield response to plant density and N rate is highly 
inuenced by the environment (Blumenthal et al., 2003; 
Colville et al., 1964; Inman et al., 2005; Licht et al., 2016). For 
a yield–density relationship, in the LYE, yield declined with 
increases in plant density. In this environment, resources such 
as water, radiation, or nutrients primarily limit yield–density 
relationship. In the MYE, a quadratic model was the best t 
since the limiting resources become less limited allowing a shi 
of the AOPD to higher plant densities relative to the LYE. 
Finally, in the HYE there was a linear positive response, the 
limiting factor to yield could be related to its genetic potential 
rather than to environmental factors (Assefa et al., 2016). 

e primary outcomes on the yield–density are in accordance 
with previous studies (Assefa et al., 2016; Bullock et al., 1998; 
Hörbe et al., 2013; Shanahan et al., 2004).

Corn yield response to N rate was also highly inuenced by 
the environment (Inman et al., 2005; Jaynes et al., 2011; Koch 
et al., 2004; Roberts et al., 2012; Schmidt et al., 2002), but this 
relationship is not as dependent on yield levels as the yield-plant 
density model. Corn yield and N fertilizer responses have been 
documented to be independent (Arnall et al., 2013; Dhital 
and Raun, 2016; Raun et al., 2011), and both are known to 
impact N demand. Crop N response is strongly dependent on 
soil N supply and must be considered to determine the AONR 
(Dhital and Raun, 2016). Researches have demonstrated the 
need to adjust a specic N rate by year and location, demanding 
in-season recommendations (Dhital and Raun, 2016; Franzen 
et al., 2016; Raun et al., 2005; Schepers et al., 2004; Shanahan 
et al., 2008). us, reactive approaches, including use of remote 
sensing, should be implemented in addition to predictive 
approaches, including soil and yield maps, terrain attributes, 
to predict yield and N response and to determine the economi-
cally optimal N rate (EONR) (Roberts et al., 2012; Shanahan 
et al., 2008). In this study, the yield–N rate model was very 
similar within a yield environment across independent datas-
ets. is was probably due to the similarities in soil character-
istics and weather, since all studies were conducted in the same 
region in Brazil (Table 1). erefore, yield–N rate models are 
restricted to similar soil–weather conditions, crop rotations 
(e.g., corn–soybean vs. continuous corn), cropping systems 

Fig. 4. Models for grain yield response to plant density and fertilizer N rates in three yield environments, i.e., (A and D) low yield 
environment, (B and E), medium yield environment, and (C and F) high yield environment. Vertical bar on each data point refers to the 
standard error.
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(with or without cover crops), and highly dependent on the soil 
N supply and yield potential per environment.

e choice of yield environment levels to characterize 
corn yield–density and yield–N rate models can be further 
improved if yield environments are treated as a continuous 
variable. From a physiological standpoint, yield–density models 
should be understood as a continuous change in the response 
trends, from low to high yielding environments. Following 
this rationale, all databases were merged to further investigate 
the yield–density model by dividing yield environments into 
2 Mg ha–1 yield intervals (Fig. 7A). us, for the yield–den-
sity relationship theoretically is expected a shi of the AOPD 
from low to high plant densities as yield increases (Fig. 7 A, B). 
Yield–density model remained constant within the same yield 
environment across all databases evaluated (dierent years, 
sites, hybrids, and countries; Brazil and United States) when 
using a plant density range from 56,000 to 88,000 plants ha–1. 
Hybrid can signicantly inuence the yield–density model 
(Assefa et al., 2016; Sarlangue et al., 2007; Widdicombe and 
elen, 2002). One example is that plant density is usually 
higher for short- rather than for full-season hybrids, because 
the rst ones have small leaf area per plant and leaf area plastic-
ity (Otegui and Melón, 1997), needing more plants to reach 
the same amount of cumulative intercepted radiation (Edwards 
et al., 2005). Other example are the studies portraying hybrids 
less respondent to density beneting in drought-prone environ-
ments, density-neutral corn hybrids (Tokatlidis et al., 2011; 
Tokatlidis and Koutroubas, 2004).

Yield data distribution for the training and validation 
databases (Brazil and United States) presented statistically 
( < 0.05) equal mode, rst and third quartiles (Fig. 7C) even p 
when the distributions were not normal. Non-normal corn 
yield distribution was previously reported by Harri et al. (2009) 
and Hennessy (2009) in a county level. For data distribution, 
the aforementioned three factors were determinant for obtain-
ing comparable yield–density models across databases.

is study was not focused on the understanding of the 
main factors governing the classication of yield environments, 
but exploring the yield data distribution from dierent years 
(2009–2017) and countries (Brazil and United States) to identify 
statistical parameters in the data highly inuencing yield–den-
sity models. erefore, independent datasets could portray in 
a high-probability similar yield–density models if the follow-
ing criteria are fullled: (i) 50% interquartile range (50%IQR) 
and (ii) modes statistically similar for the yield data distribu-
tion, (iii) plant density evaluated within the same range among 
datasets, (iv) corn hybrids evaluated are “density-dependent” 
(Tokatlidis et al., 2011), and (v) modern corn materials, within 
similar hybrid release years — older corn hybrids present dier-
ent response to plant density (Ciampitti and Vyn, 2012). Lastly, 
the yield–factor empirical models presented in this study have 
limited predictability power as constrained by the tested factors 
(e.g., plant density range, hybrids, soil characteristics, and yield 
potential). As previously stated, yield–density models are primar-
ily restricted by the nature of its data distribution and the afore-
mentioned factors such as range of plant density evaluated, yield 
potential, and genotype characteristics in response to the plant 

Fig. 5. Overall models superimposed on validation dataset for yield–plant density, two datasets from United States and Brazil (A) and for 
yield–fertilizer N rates, one dataset from Brazil (B). Vertical bars for each data point refer to the standard error. Frequency distribution of 
validation data for plant density (C) and for N rates (D). US = United States; BR = Brazil.
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density factor. Development of a more universal yield–density 
models will provide guidance to improve understanding of poten-
tial corn yield gains under both sub- and supra-optimal plant 
density levels, low- and high-yielding environments, respectively.

In this study previous corn yield maps, from recent past 
years, were good predictors to in-season yield environments. 
e yield map data approach to delineate yield environment 
is considered to be the primary form of precision agriculture 
technology in the United States (Pierce and Nowak, 1999). 
However, even at the present times, acquisition of high-quality 
yield maps is known to be a tedious and educational-intensive 

task. In this sense, future researches must focus on the devel-
opment of models combining dierent data layers to predict 
in-season yield environments. Nowadays, precision agriculture 
techniques such as variable seeding (Bullock et al., 1998; Hörbe 
et al., 2013; Ping et al., 2008) and N rates (Franzen et al., 2016; 
Holland and Schepers, 2010; Solie et al., 2012) have become 
more common, in an attempt to account for the within-eld 
variability. us, adoption of more universal models to predict 
corn yield response to factors such as plant density and N rates, 
can help farmers to improve the eciency and protability of 

Table 4. Comparison between training and validation quadratic (y = ax2  + bx + c) models for plant density and fertilizer N rates using 
Akaike Information Criterion (AIC) as selection criterion (the smaller the value the better the model).

Overall model†
Coefcient BR plant density US plant density N rate
at = av 11310.1 14172.1 7900.4
at = av; bt = bv 11308.3 14171.2 7898.6
at = av; bt = bv; ct = cv 11306.2 14169.2 7896.3
at ≠ av; bt ≠ bv; ct ≠ cv 11312.5 14175.6 7902.2

Yield environment model

Coefcient
BR plant density US plant density N rate

HYE MYE HYE MYE HYE MYELYE LYE LYE
at = av 3459.4 5214.2 – 3663.9 4775.7 – 2004.1 4114.2 1572.2
at = av; bt = bv 3458.1 5213.3 1657.2 3664.8 4754.4 4555.8 2001.2 4112.2 1570.2
at = av; bt = bv; ct = cv 3456.1 5211.8 1663.2 3662.8 4752.5 4554.1 2006.3 4110.3 1578.5
at ≠ av; bt ≠ bv; ct ≠ cv 3460.4 5216.5 1660.3 3664.7 4757.4 4556.7 2006.1 4116.1 1573.8
† BR = Brazil; US = United States; HYE = high yield environment; MYE = medium yield environment; LYE = low yield environment (a coefcient was 0 
in the plant density regressions in the LYE because the best t was linear).

Fig. 6. Quadratic model superimposed on validation dataset by yield environment. i.e., (A and D) low yield environment, (B and E) medium 
yield environment, and (C and F) high yield environment. Vertical bar for each data point refers to the standard error.
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the decision-making process and the corn production scheme 
as an integral part of their agricultural activity.

CONCLUSIONS

Yield–density and yield–N rate relationships were largely 
aected by their interactions with yield environment. For the 
yield–density relationship, three dierent trends were docu-
mented: a positive linear in HYE, a quadratic in MYE and a 
negative linear in LYE. For the yield–N rate relationship, com-
parable t (quadratic-plateau models) but changing the AONR 
across all yield environments evaluated. Both AOPD and 
AONR were positively correlated with yield levels. Yield–factor 
relationships within the same yield environment remained con-
stant regardless of the year, location (Brazil and United States 
for plant density) or hybrid evaluated. Since in this study only 
two hybrids were evaluated, it is not possible to determine if this 
eect could be extended to dierent genotypes. Nonetheless, 
the validation step performed with United States data involved 
the evaluation of several commercially available hybrids. Since 
soil N supply is an important factor to be considered for corn 
yield response to N, more “universal” yield–N rate relationships 
are primarily more constrained by the study of this factor as 
compared to the yield–density response models.

In summary, the likelihood of two independent datasets of por-
traying comparable yield–density response models increase as their 
yield data distribution becomes more alike, statistically related 
to position of the mode, and rst and third quartiles (50% IQR). 
Considering the aforementioned constraints, universal yield–den-
sity models can be developed to predict AOPD, as long as the yield 
data distribution is known. e latter would allow constructing 
mathematical frameworks to upscale site-specic yield–density 
models to larger spatial domains (e.g., county, district, and regional 
scales). e challenge limiting the applicability of these models 
remains in the factors dening yield environments, therefore, 
future research should focus on improving understanding of the 
key drivers contributing to yield environments.
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Fig. 7. Yield response by yield environment relative the lowest plant density yield in each environment. Corn yield in the lowest population 
tested in each environment from <6 Mg ha –1, to >18 Mg ha–1 are respectively: 5.4, 7.2, 9.0, 11.1 13.0, 15.0, 16.6, 18.3 Mg ha–1 (A). Yield 
distribution for training and validation datasets, dashed lines represent first and third quartiles, and arrows represent the mode. No 
statistical difference was documented to mode, first and third quartiles (  > 0.05) (B). Yield frequency distribution by yield environment (C).p
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