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Estimating maize (Zea mays L.) yields at the field level is of great interest to farmers, service

dealers, and policy-makers. The main objectives of this study were to: i) provide guidelines

on data selection for building yield forecasting models using Sentinel-2 imagery; ii)

compare different statistical techniques and vegetation indices (VIs) during model build-

ing; and iii) perform spatial and temporal validation to see if empirical models could be

applied to other regions or when models' coefficients should be updated. Data analysis was

divided into four steps: i) data acquisition and preparation; ii) selection of training data; iii)

building of forecasting models; and iv) spatial and temporal validation. Analysis was per-

formed using yield data collected from 19 maize fields located in Brazil (2016 and 2017) and

in the United States (2016), and normalised vegetation indices (NDVI, green NDVI and red

edge NDVI) derived from Sentinel-2. Main outcomes from this study were: i) data selection

impacted yield forecast model and fields with narrow yield variability and/or with skewed

data distribution should be avoided; ii) models considering spatial correlation of residuals

outperformed Ordinary least squares (OLS) regression; iii) red edge NDVI was most

frequently retained into the model compared with the other VIs; and iv) model prediction

power was more sensitive to yield data frequency distribution than to the geographical

distance or years. Thus, this study provided guidelines to build more accurate maize yield

forecasting models, but also established limitations for up-scaling, from farm-level to

county, district, and state-scales.
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1. Introduction

Precise and reliable yield forecast tools could play a funda-

mental role in supporting policy formulation, and decision-

making process in agriculture (e.g. storage and transport)

(C�ordoba, Bruno, Costa, Peralta, & Balzarini, 2016;

Kantanantha, Serban, & Griffin, 2010; Stone & Meinke, 2005).

Historically, most models developed for yield forecasting

purposes are focused to large domains (between-field vari-

ability) (DiRienzo, Fackler, & Goodwin, 2000; Doraiswamy,

Moulin, Cook, & Stern, 2003; Hamar, Ferencz, Lichtenberger,

Tarcsai, & Ferencz-Arkos, 1996; Lopresti, Di Bella, &

Degioanni, 2015; Reeves, Zhao, & Running, 2005; Sibley,

Grassini, Thomas, Cassman, & Lobell, 2014), mostly because,

in the past there was limited source of data with a sufficient

temporal and spatial resolution for accurate within-field crop

yield estimates. Nowadays, satellite data have become more

accessible (Azzari, Jain, & Lobell, 2016) with more options of

high resolution imagery such as Skysat, RapidEye, and

Sentinel-2 satellites, and more studies have portrayed the

benefits of using high-resolution satellite imagery for identi-

fying within-field yield variation (Azzari et al., 2016; Jin,

Azzari, Burke, Aston, & Lobell, 2017; Peralta, Assefa, Du,

Barden, & Ciampitti, 2016). Among the high-resolution satel-

lites, the publically accessible Sentinel-2, a joint initiative of

the European Commission (EC) and the European Space

Agency (ESA), represents a great opportunity towards fine-

resolution yield forecast models, since it was designed to

provide systematic global acquisitions of high-resolution (10-

to 20-m) multi-spectral imagery with a high revisit frequency

(5 days at equator) (Drusch et al., 2012).

The potential to forecast yield using satellite information is

already known and a wide set of statistical approaches have

been explored. Some approaches rely on the statement that

total biomass production is closely related to the fraction of

photosynthetically active radiation (fAPAR) absorbed by

vegetation over the course of the growing season (Monteith,

1977). Estimations of fAPAR are most often derived from VIs

(Lobell, 2013), since the linear relationships between those two

variables are well-known (Myneni & Williams, 1994). Howev-

er, considering that most remote sensing data are not avail-

able on a daily basis, some interpolation is needed to estimate

daily fAPAR.

Empirical relationships between ground-based yield mea-

sures and remote sensing data have been considered as the

simplest approach to forecast yield with low computational

power demanding (Hatfield, Gitelson, Schepers, & Walthall,

2008; Lobell, 2013), and have been successfully implemented

in several studies with maize (Bogn�ar et al., 2011; Bu, Sharma,

Denton, & Franzen, 2017; Lobell, Thau, Seifert, Engle, & Little,

2015; Peralta et al., 2016; Shanahan et al., 2001; Sibley et al.,

2014). The success of this approach is directly related to the

selection of ground-truth data to build models. During the

model building process the separation of data into training

and validation datasets is a common practice allowing self-

test model replicability irrespective of the difference be-

tween the two datasets in space or time. The selection of

training data is known to have a direct impact on the model

quality (Hatfield et al., 2008; Schwalbert et al., 2018) but,
despite that, the majority of the published scientific literature

randomly selected a subset of the data for comprising training

or validation data (Assefa et al., 2016; Gholap, Ingole, Gohil,

Gargade, & Attar, 2012; Gonzalez-Sanchez, 2014; Peralta

et al., 2016; Sheridan, 2013) without following any guideline or

statistical procedure.

Moreover, the choice of the statistical model employed to

forecast yield has a large impact on the final result (Anselin,

Bongiovanni, & Lowenberg-DeBoer, 2004; Peralta et al., 2016).

Mostly empirical yield forecasting models based on VIs utilise

classical ordinary least squares (OLS)-based on simple or

multiple regression techniques (Noureldin, Aboelghar, Saudy,

& Ali, 2013; Rembold, Atzberger, Savin, & Rojas, 2013;

Shanahan et al., 2001), without properly accounting for the

spatial autocorrelation structure amongst these variables

(Imran, Zurita-Milla, & Stein, 2013; Peralta et al., 2016). The

latter situation can lead to problems with inflated variance

and likely resulting in wrong conclusions (Anselin et al., 2004;

Bongiovanni, Robledo, & Lambert, 2007).

Models derived from simple empirical relationships

usually tend to be time- and space-limited, valid only under

similar conditions as when the correlation was established

(Hatfield et al., 2008; Lobell, 2013; Tucker, 1979). Currently,

the potential to forecast yield using satellite information

through empirical models is already known, but the chal-

lenge is to extend these tools beyond the environment

where the study was done (Hatfield et al., 2008). Lastly, the

selection of adequate VIs is also an important step for model

development (Peralta et al., 2016). The normalised difference

vegetation index (NDVI) (Rouse, Haas, & Schell, 1973) is one

the most widely used VIs to assess crop growth and yield

(Peralta et al., 2016; Raun, Solie, & Johnson, 2002; Rembold

et al., 2013; Solie, Dean Monroe, Raun, & Stone, 2012), and

it becomes as a benchmark for researchers developing new

VIs (Hatfield et al., 2008). However, there are some con-

straints related to saturation in medium to high leaf area

index (LAI) values with NDVI (Haboudane, Miller, Pattey,

Zarco-Tejada, & Strachan, 2004; Nguy-Robertson et al.,

2012; Tucker, 1979). Thus, the incorporation of other VIs that

still have sensitivity in high LAI values such as green NDVI

(NDVIG) (Gitelson, Kaufman, & Merzlyak, 1996) and red-edge

NDVI (NDVIre) (Gitelson & Merzlyak, 1994) have been re-

ported improving empirical models (Hatfield et al., 2008;

Peralta et al., 2016).

Following this rationale, guidelines for implementing yield

forecasting models derived from empirical relationships and

for validating their spatio-temporal relevancy still remain

unknown. Thus, the objectives of this studywere to: i) identify

parameters to guide data selection aiming at building yield

forecasting models using Sentinel-2 satellite imagery; ii)

compare different approaches (OLS vs. spatial correlation) and

different VIs during the model building process; iii) perform

spatial and temporal model validation using independent

datasets to identify potential limitations in up-scaling yield

forecasting models. The main hypothesis is that model pre-

dictability power increases as the yield frequency distribution

of the training data becomes more similar to the validation

data even when considering diverse spatio-temporal scales

(geography, time, or years).

https://doi.org/10.1016/j.biosystemseng.2018.04.020
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2. Materials and methods

The analysis was performed on end-season yieldmonitor data

and mid-season Sentinel-2 images, collected during the crit-

ical period for maize yield determination (approximately 20

days before and 20 after flowering) (Johnson & Mueller, 2010;

Peralta et al., 2016; Sakamoto, Gitelson, & Arkebauer, 2014).

Sentinel satellite imagery of selected maize fields located in

Brazil (BR) (Fig. 1A and B) and US (Fig. 1C) was utilised for the

analysis. Six fields fromRio Grande do Sul (RS) state (2016/2017

season) and seven fields from Mato Grosso (MT) state (five

from 2016 season and two from 2017 season) were selected for

comprising the BR database. The field size ranged from 20 to

130 ha. It is important to mention that for MT, fields were

selected from the second season (mainly cultivated after the

soybean) since the first season is harvested around February.

Usually during the second season in MT maize yield is lower

compare to RS due less favourable weather conditions. In RS,

average temperature (considering the last 20 years) during the

growing season was 20.4 �C with a cumulative precipitation of

1080 mm, while in MT, average temperature during the sec-

ond season was 23.7 �C with a cumulative precipitation of

700 mm.

The US database comprised six fields (2016 season), all

located in the state of Kansas (KS). This database was only
Fig. 1 e Field research studies located in Mato Grosso (MT) state

state of Kansas (KS) (C) from US. Circles represent the precise g

Scales bars are in different scales for panels A, B, and C.
considered as validation data in the last step (spatial valida-

tion) where models previously built were used to forecast

maize yield in Kansas fields, in order to test our main hy-

pothesis. Information related to harvest date, satellite imag-

ery collection data, and specific coordinates (latitude,

longitude) for each field were recorded (Table 1). Most of the

BR fields were utilised for training purposes, comprising the

training database. Fertilizer application rates, crop manage-

ment, and tillage practices varied between fields.

This study was divided into four major steps to achieve the

proposed objectives (Fig. 2). The four steps were related to: 1)

data acquisition and preparation, 2) selection of training data

and verification, 3) building yield forecasting models, and 4)

spatial and temporal validation (including fields from

different growing seasons and geographies).

2.1. Data acquisition and preparation (Step 1)

The primary objective of this step was to establish criteria for

selecting adequate quality of yield monitor (calibrated) and

satellite imagery data. Yield data was submitted to a filter

process in order to remove outliers and inliers. In this

research, outliers were considered as values out of the

mean ± 3 standard deviations (SD) range. According to Che-

byshev's theorem (Amidan, Ferryman, & Cooley, 2005), it is
(A), Rio Grande do Sul state (RS) (B) both in Brazil, and the

eo-position of the fields within each region and country.

https://doi.org/10.1016/j.biosystemseng.2018.04.020
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Table 1 e Descriptive information of maize yield and satellite data: state, season, geographical position, harvest date and
imagery acquisition date.

Field State Season Data Latitudea Longitudea Harvest date Imagery date

F1 RS 2016e2017 V �28.48 �52.78 02/16/2017 11/29/2016

F2 RS 2016e2017 V �28.53 �53.54 02/21/2017 11/29/2016

F3 RS 2016e2017 V �28.18 �52.69 02/14/2017 11/29/2016

F4 RS 2016e2017 T �28.32 �52.71 02/27/2017 11/29/2016

F5 RS 2016e2017 V �27.62 �53.36 02/18/2017 11/29/2016

F6 RS 2016e2017 T �28.53 �53.56 02/17/2017 11/29/2016

F7 MT 2016 V �15.47 �54.01 07/02/2016 04/29/2016

F8 MT 2016 T �15.57 �54.15 07/06/2016 04/29/2016

F9 MT 2016 V �15.57 �54.16 07/05/2016 04/29/2016

F10 MT 2016 V �15.56 �54.17 07/05/2016 04/29/2016

F11 MT 2016 T �15.58 �54.15 06/30/2016 04/29/2016

F12 MT 2017 V �15.15 �53.94 06/30/2017 04/24/2017

F13 MT 2017 V �15.15 �53.94 06/29/2017 04/24/2017

K1 KS 2016 V 39.53 �97.21 09/27/2016 06/20/2016

K2 KS 2016 V 39.54 �97.15 10/01/2016 06/20/2016

K3 KS 2016 V 39.55 �97.22 10/03/2016 06/20/2016

K4 KS 2016 V 39.57 �97.23 09/30/2016 06/20/2016

K5 KS 2016 V 39.53 �97.23 09/22/2016 06/20/2016

K6 KS 2016 V 39.56 �97.24 09/29/2016 06/20/2016

T ¼ Training Database; V ¼ Validation Database.
a Decimal coordinates e WGS 84. RS ¼ Rio Grande do Sul. MT ¼ Mato Grosso. KS ¼ Kansas.
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inferred that a minimum of 89% of the data is within the

mean ± 3 SD, regardless the data distribution. Inliers are data

that differ significantly from their neighbourhood but lie

within the general range of variation of the data set (C�ordoba

et al., 2016). Spatial autocorrelation Moran's local index (Ii)

(Anselin, 1995) was used to identifying inliers. The Ii is basi-

cally applied individually to each neighbourhood and shows

the degree of similarity between an observation and its

neighbours. In summary, localmoran function of the “spdep” R

package (Bivand & Piras, 2015) was used to identify inliers.

Moreover, the moran.plot function was implemented to

calculate Ii and perform the Moran scatter plot to identify

additional inliers. Further details on this procedure can be

found in C�ordoba et al. (2016). Lastly, spatial interpolation was

performed to estimate maize yield values for areas where

yield was not sampled. This procedure was required, even

considering that yield monitor data was recorded in a high

density (5 � 10 m), because after filtering yield density data

was significantly decreased. Aiming at getting similar

arrangement for all datasets, equivalent satellite imagery grid

structure was used (10 � 10 m). Geostatistical interpolations

involving semivariogram adjustment and ordinary kriging

were performed, done individually for each field, using R

packages “geoR” (Ribeiro & Diggle, 2016) and “gstat” (Pebesma,

2004).

Sentinel-2 images are composed by 10 bands with reso-

lution between 10 � 10 m and 20 � 20 m, in the visible, near

infrared, and short-wave infrared part of the spectrum. For

this study only 4 bands: 3 (green), 4 (red), 8 (near-infrared),

and 8a (red-edge 4) were used, in agreement with the sci-

entific literature in the topic of forecasting crop yields using

satellite data, highlighting the importance of those bands

(wavelengths) (Bu et al., 2017; DiRienzo et al., 2000;

Doraiswamy et al., 2003; Hamar et al., 1996; Lobell et al.,

2015; Lopresti et al., 2015; Peralta et al., 2016; Reeves et al.,
2005; J. Shanahan et al., 2001; Sibley et al., 2014). The

selected bands were employed used to calculate 3 diverse

VIs: NDVI, NDVIG, and NDVIre. The selection of these VIs

was based on previous researches investigations showing

the efficiency of these VIs to forecast final maize yield

(Bogn�ar et al., 2011; Bu et al., 2017; Peralta et al., 2016;

Shanahan et al., 2001). Sentinel-2 images were collected in

an interval between 20 days before flowering and 20 days

after flowering, depending on the availability of the image

and the cloud interference (Table 1). The red-edge band was

resized to 10 m pixel size. Atmospheric correction was per-

formed using the semi-automatic classification plugin in

QGIS 2.18 (Congedo, 2016) in order to obtain surface reflec-

tance without the interference of atmospheric gases. The

VIs, including NDVI, NDVIre, and NDVIG, were generated

using a combination of visible, near-infrared and red-edge

bands.

2.2. Selection of training data (Step 2)

As previously detailed, only selected BR fields (RS and MT)

were used as training data with KS fields left out for the vali-

dation step. All fields were randomly sampled (bootstrap with

replacement) to generate equal size of data points per field,

800 per field. Since one of the objectives of the paper was to

provide guidelines for training data selection, three different

methods were evaluated in this study. Steps 2 and 3 for the

theoretical framework (Fig. 2) were repeated in a retroactive

process for each one the strategies, individually for each BR

(MT and RS) dataset. The three data selection strategies tested

were: i) selection of two fields with broad yield range and with

the data concentrated (more than 50% of the values) between

the first and third quartiles of the overall yield frequency

distribution, herein termed as the “similar yield distribution”;

ii) selection of fields with the smallest, medium, and greatest

https://doi.org/10.1016/j.biosystemseng.2018.04.020
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Fig. 2 e Theoretical framework indicating all steps of the analysis: step 1- data acquisition and preparation, step 2- selection

of training data and verification, step 3- building yield forecasting models, and step 4- model validation.
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average yield among all fields, three field total per region,

herein termed as the “average yield”, and iii) selection of two

fields with the lowest average yields among all fields (left

shifted fields in relation to the overall distribution), herein

termed as the “negative skew yields” (Supplementary table 1).

For each one of the strategies, the remained fields were

considered as the verification data. For example, for MT in the

strategy “similar yield distribution”, two fields were selected
and the remaining five fields were utilised for the verification

of the developed model.

The similarity of training and verification data distribution

was compared using four statistic parameters, mode, inter-

quartile Range (IQR) position (range between the first and the

third quartiles), skewness, and kurtosis. To compare the sta-

tistic parameters a 95% bootstrap percentile confidence in-

terval (CI) (Efron & Tibshirani, 1994) was calculated using the

https://doi.org/10.1016/j.biosystemseng.2018.04.020
https://doi.org/10.1016/j.biosystemseng.2018.04.020
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“boot” package in R (Canty & Ripley, 2017), obtaining a total of

1000 bootstrap replicates to estimate the variability.

2.3. Building yield forecasting models (Step 3)

As aforementioned, this step occurred in parallel to the data

selection (Step 2), yield forecasting models were built utilizing

the three data selection strategies for training data. As an

initial phase, spatial autocorrelation analysis was conducted

for yield andVIs (NDVI, NDVIG, andNDVIre) in each field using

Moran's test. Moran's I statistic measures the strength of

spatial autocorrelation in a response among nearby locations

in space as a function of cross-products of the neighbouring

weighted deviations from the mean. Moran's I coefficient

values near 1 indicate positive and �1 negative autocorrela-

tion. Coefficient near 0 refers to lack of spatial autocorrelation.

In this step two approaches were followed for model evalua-

tion between yield and VI relationship: i) implementing linear

regression model using the ordinary least squares method,

herein termed as “OLS” model, assuming that the errors were

independent and identically distributed (i.i.d.), and ii) imple-

menting linear regression considering the spatial structure of

the errors (with Gaussian, spherical and exponential spatial

correlation of plotted errors) to account for possible violations

of the i.i.d. assumption. The last were adjusted using the gls

function of the “nlme” R package (Pinheiro, Bates, DebRoy,

Sarkar, & R Core Team, 2017).

For model selection, stepwise-regression procedure was

implemented to determine the variables (VIs) that signifi-

cantly contributed to yield prediction models. Stepwise for-

ward was implemented using the function stepAIC of the

“MASS” package (Venables & Ripley, 2002) from the R soft-

ware. Statistical model comparison was performed using

statistical criteria proposed by Akaike (AIC) (Johnson &

Omland, 2004) and the coefficient of determination (R2). Mul-

ticollinearity of the remaining bands was also evaluated by

computing the variance inflation factor (VIF). A threshold VIF

value was established (Zuur, Ieno, & Elphick, 2010) and a VI

with VIF greater than 2 was removed from the model. The

standardised coefficientwas determined using the “lm.beta” R

package to check the weight of each VI into the model.

After running all the rounds for Steps 2 and 3 (Fig. 2), sta-

tistical evaluation on similarities between training and vali-

dation data distribution according to the parameters tested

(mode, quartiles, skewness and kurtosis) and model accuracy

assessing using Root-mean square error (RMSE) (observed vs

predicted yield) were implemented.

As a last phase for this step, two categories of yield fore-

casting models were built: i) universal model, including both

RS and MT training data and ii) site-specific models, obtaining

one specific-model per state/region (one for RS and one for MT

regions) evaluated.

2.4. Spatial and temporal validation data (Step 4)

After the selection of training data, model development and

verification, a validation was performed aiming at verifying

spatial and temporal dependency on the models. For testing

the first one (“spatial validation”), Kansas database was uti-

lised as validation data. All the six sets of training data (three
from RS and three from MT) were tested. The same approach

discussed in the previous sections was applied. Yield fre-

quency distribution of all the training data from RS and MT

were compared with KS yield frequency distribution. After

studying all yield frequency distributions, the most proper

model was selected to forecast yield of the KS database (US),

comprising six fields. The last validation (“temporal valida-

tion”) was performed using new MT fields (2017) since only in

MT there was data available from two different seasons (2016

and 2017). Basically, yield forecasting model built using data

from 2016 was used to estimate 2017 yields. The accuracy of

estimation andmodel fittingwas evaluated using the RMSE. In

addition, spatial predictions from each model were visually

compared with geostatistical interpolation of yield (yield

maps).
3. Results

3.1. Selection of training data

Different yield frequency distribution was documented for RS

and MT. For RS, average maize yield was 12.7 Mg ha�1, with

50% of the data (IQR) ranging from 10.6 to 14.8 Mg ha�1 and

with a mode of 12.9 Mg ha�1 (Fig. 3A). For MT, average maize

yield was 5.5Mg ha�1, with IQR ranging from 4.5 to 6.4Mg ha�1

and with a mode of 5.7 Mg ha�1 (Fig. 3F). In both states, yield

frequency distribution was not considered normal according

to ShapiroeWilk test (P < 0.05). Furthermore, largewithin- and

between-field variability was documented (Fig. 3B and G). For

RS, field 1 was the most productive with a yield average of

14.9Mg ha�1 andwith a variation range from 9.2 to 20Mg ha�1,

while field 5 was the least productive with a yield average of

10.3 Mg ha�1 and with a variation from 5.0 to 15.2 Mg ha�1. For

MT, field 10 was themost productive field with a yield average

of 7 Mg ha�1 with a variation range from 4.1 to 8.6 Mg ha�1,

while field 9 was the least productive with a yield average of

4.2 Mg ha�1 and with values ranging from 2.9 to 5.9 Mg ha�1.

The field selection to comprise the training data affected

the model quality and, consequently, the predictability power

of the model. For RS, three different sets of fields were tested

as training data: fields 4 and 6 e similar yield distribution e

(Fig. 3C), fields 1, 3 and 4 e average yielde (Fig. 3D) and fields 2

and 4 e negative skew e (Fig. 3E) (Supplementary table 2). The

RMSE decreased as the yield frequency distribution of the

training becomes more alike to the validation data. When

fields 2 and 4 comprised the training data, “negative skew”

strategy, the greatest RMSE (1.97 Mg ha�1) was documented

(Supplementary table 2). For the “similar yield distribution”

strategy, training and validation data were more alike sharing

comparable IQR (P > 0.05) with a slightly different mode (12.4

vs. 13.0 Mg ha�1) (P < 0.05) and RMSE of 1.50 Mg ha�1. The

lowest RMSE, 1.48 Mg ha�1, was reported when the number of

fields increased from 2 to 3, “average yield” strategy. After this

process, training and verification yield frequency distribution

resulted in comparablemode (P> 0.05) and IQR (P> 0.05). Since

the selection of one additional field just increased slightly the

RMSE (from 1.48 to 1.50 Mg ha�1), only fields 4 and 6 were

chosen for posterior analysis e “similar yield distribution”

strategy, leaving onemore field available formodel validation.

https://doi.org/10.1016/j.biosystemseng.2018.04.020
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Fig. 3 eMaize yield frequency distributions for RS (AeE) and MT (FeG) fields. (A and F) Overall yield frequency distribution in

RS and MT respectively. (B and G) Field level yield frequency distribution in RS and MT respectively. (C, D, E) Training and

verification yield frequency distribution for different training data selection strategies in RS. (H, I, J) Training and verification

yield frequency distribution for different training data selection strategies in MT. Root mean square error (RMSE) reported in

each panel was obtained from the observed and predicted yields using each set of training and verification data.
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Likewise, the same criteria aforementionedwas applied to MT

fields, the “negative skew” strategy of selecting training data

shifted fields resulted in significantly different modes, first

and third quartiles (P < 0.05) and the greatest RMSE

(1.23 Mg ha�1) (Fig. 3J). For MT, the “average yield” strategy did

not result in the smallest RMSE (0.70 Mg ha�1). This strategy

led to statistically equalmodes (P> 0.05), but different first and

third quartile positions (P < 0.05) (Fig. 3I). The selection of

fields 8 and 11, “similar yield distribution” data training

strategy, resulted in non-differences between training and

verification modes and IQR (P > 0.05) obtaining a RMSE of

0.62 Mg ha�1 (Fig. 3H). Following the rationale for field selec-

tion for RS, fields 8 and 11 were chosen for posterior analysis.

No pattern was observed for average, skewness and kurtosis

linking yield data distribution similarities and RMSE for the

models from RS and MT (Supplementary table 2).

3.2. Building yield forecasting models

Spatial autocorrelation analysis conducted using Moran's I

test (MI) on VIs and yield data are presented in Supplementary

Table 3. In general, autocorrelation (Moran's I test) for all

variables was positive and statistically significant (exception

for F8) indicating that when yield or VI values are geographi-

cally in shorter distances are more alike, diminishing the

spatial correlation as distance increases. The absence of

spatial correlation in F8 was probably due to higher within-

field yield homogeneity compared to the other fields.

Following the same rationale, yield forecasting models

increase predictability power when a spatial correlation

structure was considered. The spatial regression models out-

performed the OLS once the AIC values were smaller for the

spatialmodels compared to theOLS ones (Table 2). It indicated

that there was a good trade-off between the goodness of fit

and the complexity of the model. For the RS model, residuals

were assumed following a Gaussian spatial correlation

structure, while for the MT and the universal (both RS þ MT)

models the exponential correlation structure presented the

best fit to describe the data (Table 2).
Table 2 e Multiple linear regression models for the ordinary le
correlation including the vegetation indices (VIs) obtained from
season yield monitor data. Equations are related to model wit
exponential correlation of the plotted errors. SRG ¼ spatial reg
errors. SRS ¼ spatial regression considering spherical correlat

Data Model AIC

RS OLS 3771 Yield

SRE 3762

SRG 3759

SRS 3770

MT OLS 3087 Yield

(R2¼0.SRE 891

SRG 1986

SRS 894

Universal OLS 9985 Yield

(NDVISRE 6750

SRG 8959

SRS 6836

Notes: The statistically significant coefficients are indicated by asterisk

P < 0.001. Parameters with no asterisks are therefore not significant at th
All VIs were kept in the MT and universal models after the

stepwise selection, while for RS, only the NDVIre was retained

(Table 2). The NDVIre presented the greatest weight for all

models. Even some degree of multicollinearity among the

indices was expected since near-infrared (NIR) band was a

component of all of them, the VIFs were less than 2 for the VIs

that remained in the model.

3.3. Spatial and temporal validation of models

In the first step of the spatial validation, the universal model

was compared to the site-specificmodels (state-scalemodels).

The predictability power of the universal model was drasti-

cally reduced both for within- (data not shown) and between-

field variability (Fig. 4A) compared to the site-specific models

(Fig. 4B). The universal model slightly overestimated yield for

the MT fields (low productivity) and underestimated yield for

the RS fields (high productivity). Site-specific models resulted

in RMSE of 1.50 Mg ha�1 for RS and 0.62 Mg ha�1 for MT.

In the second step of the spatial validation, the RS model

was used to forecast yield of one additional dataset comprised

of six fields located in KS (US). The RS model was chosen for

this purpose since the yield frequency distribution of the RS

training data was the closest to the one for KS fields (Fig. 5A).

Despite the similarity in yield frequency distribution for KS

and RS, differences in mode and IQR (P > 0.05) were docu-

mented. The RS model presented a good predictability in low

productive areas and tended to overestimate yield in high

productive zones, resulting in a RMSE of 2.22 Mg ha�1 (Fig. 5B).

For the temporal validation, the MT model built with the

2016 data was used to forecast yield for independent fields

harvested in 2017. Yield distribution frequency between MT

training data (2016) and MT yield data from 2017 was similar

with statistically equal mode and IQR (P > 0.05) (Fig. 6A). The

MT model presented a good predictability power predicting

within-field variability of 2017 fields, with a RMSE of

0.95 Mg ha�1 (Fig. 6B). Historical weather data showed that the

2016 and 2017 growing seasons were similar, with tempera-

tures slightly above and total precipitation slightly below the
ast-square (OLS) and regression considering spatial
mid-season satellite imagery as predictors of the end-

h the lowest AIC. SRE ¼ spatial regression considering
ression considering Gaussian correlation of the plotted
ion of the plotted errors.

Equation

(Mg ha�1) ¼ 2.7*** þ 69.88*** (NDVIre) (R2¼0.68)

(Mg ha�1) ¼ 15.3*** þ 81.6*** (NDVIre) � 8.8*** (NDVIG) � 20.3 (NDVI)***

59)

(Mg ha�1) ¼ �25.6*** � 46.5 (NDVIre)*** þ 145.1 (NDVIG)*** � 67.5

)*** (R2¼0.32)

s, where * indicates P < 0.05; ** indicates P < 0.01; and *** indicates

e 0.05 level.
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Fig. 4 e Estimated versus observed maize yield. (A) State-level yield prediction using the Universal yield forecasting model.

(B) Within-field yield variability prediction using site-specific maize yield forecastingmodels. A red dashed line is presented

in panel B portraying the 1:1 line for the estimatedeobserved relationship. (C) Observed yield map versus predicted yield

map generated based on a site-specific model for RS. (D) Observed yield map versus predicted yield map generated based on

a site-specific model for MT. RMSE ¼ Root-mean square error. RS ¼ Rio Grande do Sul. MT ¼ Mato Grosso.
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average of the last 17 years (period from 1st January to 31st

June) (Fig. 6C).
4. Discussion

4.1. Building yield forecasting models

Processes to build empirical models usually involve two steps;

construction (training) and validation (Becker-Reshef,

Vermote, Lindeman, & Justice, 2010; Hatfield et al., 2008;

Peralta et al., 2016). The selection of training and validation
data is usually done randomly (Assefa et al., 2016; Lopresti

et al., 2015; Peralta et al., 2016), but the selection of training

data can directly affect model predictability power

(Schwalbert et al., 2018; Sheridan, 2013). The first outcome of

this study was related to the similarity between training and

validation data and predictability power of the model. Statis-

tical parameters such as mode, first and third quartiles, were

implemented to test the similarity between datasets. The se-

lection of fields with a broad level of variability and reduced

skewness increased the likelihood of obtaining more repre-

sentative models. Fields with a high degree of uniformity,

narrow variation, in yield are not expected to add useful

https://doi.org/10.1016/j.biosystemseng.2018.04.020
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Fig. 5 e (A) Yield frequency distribution for RS (training data e Fields 4 and 6) and for KS fields and (B) Predicted (estimated

via RS yield forecasting model) versus KS observed maize yield (end-season yield monitor data). A dashed black line

portrays the 1:1 line for the predictedeobserved yield relationship. RMSE¼ Root-mean square error. RS¼ Rio Grande do Sul.

KS ¼ Kansas.

Fig. 6 e (A) Yield frequency distribution for RS (training data e Fields 4 and 6) and for KS (B) Estimated (predicted via RS yield

forecasting model) versus KS observed maize yield (end-season yield monitor data). A dashed black line is presented in

panel portraying the 1:1 line for the estimatedeobserved relationship. (C) Average temperature and accumulated

precipitation from last 17 years (period from 1st January to 31st June). A dashed red line represents the average from the

entire period. RMSE ¼ Root-mean square error. RS ¼ Rio Grande do Sul. MT ¼ Mato Grosso. KS ¼ Kansas.
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information to the yield-VI model (Peralta et al., 2016). Fields

negatively or positively skewed for yield could bias the model.

Negative skewed fields could have a yield-VI relationship

affected by biotic or abiotic stress condition after image

acquisition (Sadras & Calvi~no, 2001), while positive skewed

fields (with yields towards high values) could face problems

related to saturation of VIs, such as NDVI (Hatfield et al., 2008).

This study tested statistical parameters related to data dis-

tribution (mean, mode, first and third quantile positions,

skewness and kurtosis) as potential indicators of similarities

in yield frequency, providing guidelines for data selection in

building forecast models. Mode and quartile positions were

themost suitable parameters driving the selection for training

and validation datasets that minimise the RMSE

(Supplementary table 2). Similar results were reported by

Schwalbert et al. (2018) in a study involving maize yield

response to plant density and fertilizer N rates. In summary,

this study also presents a novel approach for the data selec-

tion process for the training data based on studying yield data

distribution.

Additionally, the approach used to build the yield fore-

casting models as well as the selection of the VIs influenced

model predictability. The approach considering spatial cor-

relation of the regression residuals outperformed the

method considering the i.i.d assumption. This result, even

when expected, since the positive spatial correlation for

yield and for VI is already well-known (Bakhsh, Jaynes,

Colvin, & Kanwar, 2000; Bresler, Dasberg, Russo, & Dagan,

1981; Jaynes & Colvin, 1997; Morkoc, Blggar, Mlllar, &

Nlelsen, 1982; Peralta et al., 2016; Timlin, Pachepsky,

Snyder, & Bryant, 1998), suggests that spatial correlation of

regression residuals should be accounted for when building

yield forecast models (Anselin et al., 2004; DiRienzo et al.,

2000; Leiser, Rattunde, Piepho, & Parzies, 2012; Peralta

et al., 2016). Until the present time, there are only a few

studies showing the benefits of spatial adjustment to models

predicting yield from imagery data (Imran et al., 2013; Peralta

et al., 2016). Regarding the performance of the VIs as

explanatory variables, NDVIre presented the largest weight

in the regression, being the most retained index. Recently,

Peralta et al. (2016) also reported that NDVIre was more

effective to predict yields relative to NDVI and NDVIG. The

explanation for this is that the NDVIre is less influenced by

changes in leaf area, avoiding saturation issues at medium

to high LAI and yield. It is imperative also to mention that for

the MT and universal models, NDVIG and NDVI were also

retained, reflecting the potential of these indices for pre-

dicting yield variation and for fine-tuning the proposed yield

forecasting model.

4.2. Spatial and temporal validation of models

Empiricalmodels are frequently reported as an efficient tool to

forecast cereal yield, and variations in VI can account formore

than 80% of the observed within-field yield variation

(Shanahan et al., 2001; Wiegand & Richardson, 1990). Despite

the high capacity to explain yield variability, evenwithin-field,

empirical models are known to be regionally specific (Becker-

Reshef et al., 2010; Doraiswamy et al., 2003; Hatfield et al.,
2008; Moriondo, Maselli, & Bindi, 2007). Similar constraint

was documented in this study since the universal model was

not even suitable to forecast yield variations in a state-scale.

When yield forecasting models were applied individually for

MT or RS, the predictability power increased substantially.

The overall yields were lower in MT (second season) than in

RS, with maize in MT more adversely affected by abiotic

stresses (Minuzzi & Lopes, 2015). When satellite imagery was

obtained prior to flowering, abiotic stress in those fields could

severely affect final yield (Sadras & Calvi~no, 2001) and conse-

quently modify the yield-VI relationship. Truly, the model is

forecasting the potential yield at the flowering time; thus,

under- or over-estimation are probably depending on the

conditions during the reproductive growth. Furthermore, as

with any purely empirical approach, extrapolation of equa-

tions to new locations or years can be problematic (Hatfield

et al., 2008; Lobell, 2013; Lopresti et al., 2015; Moriondo et al.,

2007). For this study, the yield frequency distribution of RS

and KS fields were quite similar resulting in reasonable yield

predictability despite a loss in sensitivity to explain within-

field yield variability, highlighted by the increase in RMSE in

relation to the forecast for the RS fields. Another example

when empirical models could overcome the spatial constraint

is the study developed by Becker-Reshef et al. (2010), where

models developed in KS were successfully applied to fore-

casting wheat yields in Ukraine. In the same way as the dis-

tance in space (geographic distance), distance in time (years)

is also expected to decreasemodel predictability (Bogn�ar et al.,

2011). However, in our study, weather conditions led to similar

growth environments resulting in comparable yield data fre-

quency distributions for 2016 and 2017 seasons (Fig. 6C); thus,

resulting in comparablemodel predictability. Despite that, the

temporal analysis should be cautiously evaluated since it

comprises one year and a specific region around the globe.

Further testing including more years and other regions pre-

senting comparable weather conditions should be pursued to

validate this point.

This study showed that the selection of the fields for

comprising the training data directly affected the model

structure. Historical yield information is available in plat-

forms such as National Agricultural Statistics Service (NASS),

and once knowing the overall yield frequency distribution

from a specific region, fields representative to that region can

be selected to scale-up the yield forecasting models to

county-, district-, and state-scales. One of the main draw-

backs of remote sensing based empirical models for esti-

mating yields has been that their application is valid only for

the areas those have been calibrated for (Doraiswamy et al.,

2003; Hatfield et al., 2008; Lobell, 2013). By means of the

current outcomes, it can be implied that independent data-

sets could portray in similar yield-VI relationship if the

following criteria are fulfilled for the yield data distribution: i)

IQR and ii) mode statistically similar, and for the satellite

imagery: iii) collected at a similar growth stage, even with

fields separated by space or time. The latter could provide a

foundational knowledge to establish conditions (regions in

space and year characteristics) where empirical models

could be suitable, and when a new model should be devel-

oped. Furthermore, this study presents guidelines for
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applicability of yield forecast models where ground-truth

data is limited or scarce, providing fundamental informa-

tion for supporting policy formulation and helping farmers,

consumers, and researchers for making informed decisions

based on the crop yield forecast report.
5. Conclusions

The likelihood that two independent datasets portray similar

yield-VI relationship increases as their yield data distribution

becomes more alike, mainly related to the mode and the IQR.

In this current study, model performance was more affected

by differences in the yield frequency distribution rather than

by distance in space (BR and KS) or time within a region (2016

and 2017 seasons). Since RS and MT presented a large differ-

ence in yield frequency distribution, the universal model to

estimate maize yield in both states presented small predict-

ability power compared to the site-specific models (individual

model per state).

The regression model using the NDVI, NDVIG, and NDVIre

showed high performance for predicting within-field yield

variability. Approaches that adequately account for spatial

correlation outperformed the OLS models since yield and VIs

were spatially correlated.

This current analysis is among one of the few studies

demonstrating the utilization of mid-season high-resolution

satellite imagery to forecasting within-field maize yield vari-

ation. Future research should be focused on improving the

understanding of historical yield distribution at larger scales

(county-, district- or state-level) aiming at mapping the po-

tential and limitations of scaling-up yield forecasting models.

Acknowledgements

This study was supported by CAPES Foundation, Ministry of

Education of Brazil, Brasilia e DF, Zip Code 70.040-020,

Aquarius project (http://w3.ufsm.br/projetoaquarius/index.

php/pt/), and Kansas Corn Commission. This is contribution

no. 18-073-J from the Kansas Agricultural Experiment Station

and process 88887.130848/2016-00 from CAPES. The authors

want to thank Drakkar (http://www.drakkar.com.br/), Fabiano

Tabaldi and Fabio Gebert for providing organized corn yield

monitor information.
Appendix A. Supplementary data

Supplementary data related to this article can be found at

https://doi.org/10.1016/j.biosystemseng.2018.04.020.
r e f e r e n c e s

Amidan, B. G., Ferryman, T. A., & Cooley, S. K. (2005, March). Data
outlier detection using the Chebyshev theorem. In Aerospace
Conference, 2005 IEEE (pp. 3814e3819). IEEE.
Anselin, L. (1995). Local indicators of spatial associationdLISA.
Geographical Analysis, 27, 93e115. https://doi.org/10.1111/
j.1538-4632.1995.tb00338.x.

Anselin, L., Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). A
spatial econometric approach to the economics of site specific
nitrogen management in corn production. American Journal of
Agricultural Economics, 86, 675e687.

Assefa, Y., Prasad, P. V. V., Carter, P., Hinds, M., Bhalla, G., &
Ciampitti, I. A. (2016). Yield responses to planting density for
US modern corn hybrids: A synthesis-analysis. Crop Science, 56,
1e38. https://doi.org/10.2135/cropsci2016.04.0215.

Azzari, G., Jain, M., & Lobell, D. B. (2016). Towards fine resolution
global maps of crop yields: Testing multiple methods and
satellites in three countries. Remote Sensing of Environment,
129e141. https://doi.org/10.1016/j.rse.2017.04.014.

Bakhsh, A., Jaynes, D. B., Colvin, T. S., & Kanwar, R. S. (2000).
Spatio-temporal analysis of yield variability for a corn-
soybean field in Iowa. Transactions of the American Society of
Agricultural Engineers, 43, 31e38.

Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A
generalized regression-based model for forecasting winter
wheat yields in Kansas and Ukraine using MODIS data. Remote
Sensing of Environment, 114, 1312e1323. https://doi.org/10.1016/
j.rse.2010.01.010.

Bivand, R., & Piras, G. (2015). Comparing implementations of
estimation methods for spatial econometrics. Journal of
Statistical Software, 63, 1e36.

Bogn�ar, P., Ferencz, C., P�asztor, S., Moln�ar, G., Tim�ar, G.,
Hamar, D., et al. (2011). Yield forecasting for wheat and corn in
Hungary by satellite remote sensing. International Journal of
Remote Sensing, 32, 4759e4767. https://doi.org/10.1080/
01431161.2010.493566.

Bongiovanni, R. G., Robledo, C. W., & Lambert, D. M. (2007).
Economics of site-specific nitrogen management for protein
content in wheat. Computers and Electronics in Agriculture, 58,
13e24. https://doi.org/10.1016/j.compag.2007.01.018.

Bresler, E., Dasberg, S., Russo, D., & Dagan, G. (1981). Spatial
variability of crop yield as a stochastic soil process. Soil Science
Society of America Journal, 45(3), 600.

Bu, H., Sharma, L. K., Denton, A., & Franzen, D. W. (2017).
Comparison of satellite imagery and ground-based active
optical sensors as yield predictors in sugar beet, spring wheat,
corn, and sunflower. Agronomy Journal, 109, 299e308. https://
doi.org/10.2134/agronj2016.03.0150.

Canty, A., & Ripley, B. (2017). boot: Bootstrap R (S-Plus) Functions. R
package version 1.3-19.

Congedo, L. (2016). Semi-automatic classification plugin e User
manual. https://doi.org/10.13140/RG.2.1.1219.3524.

C�ordoba, M. A., Bruno, C. I., Costa, J. L., Peralta, N. R., &
Balzarini, M. G. (2016). Protocol for multivariate homogeneous
zone delineation in precision agriculture. Biosystems
Engineering, 143, 95e107. https://doi.org/10.1016/
j.biosystemseng.2015.12.008.

DiRienzo, C., Fackler, P., & Goodwin, B. K. (2000, August). Modeling
spatial dependence and spatial heterogeneity in county yield
forecasting models. In Proceedings of the American Agricultural
Economics Association Annual Meeting, Tampa, FL, USA (Vol. 1).

Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop
yield assessment from remote sensing. Photogrammetric
Engineering & Remote Sensing, 69, 665e674. https://doi.org/
10.14358/PERS.69.6.665.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V.,
Gascon, F., et al. (2012). Sentinel-2: ESA's optical high-
resolution mission for GMES operational services. Remote
Sensing of Environment, 120, 25e36. https://doi.org/10.1016/
j.rse.2011.11.026.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap.
CRC Press.

http://w3.ufsm.br/projetoaquarius/index.php/pt/
http://w3.ufsm.br/projetoaquarius/index.php/pt/
http://www.drakkar.com.br/
https://doi.org/10.1016/j.biosystemseng.2018.04.020
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref2
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref2
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref2
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref2
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref4
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref4
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref4
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref4
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref4
https://doi.org/10.2135/cropsci2016.04.0215
https://doi.org/10.1016/j.rse.2017.04.014
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref7
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref7
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref7
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref7
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref7
https://doi.org/10.1016/j.rse.2010.01.010
https://doi.org/10.1016/j.rse.2010.01.010
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref10
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref10
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref10
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref10
https://doi.org/10.1080/01431161.2010.493566
https://doi.org/10.1080/01431161.2010.493566
https://doi.org/10.1016/j.compag.2007.01.018
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref13
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref13
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref13
https://doi.org/10.2134/agronj2016.03.0150
https://doi.org/10.2134/agronj2016.03.0150
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref15
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref15
https://doi.org/10.13140/RG.2.1.1219.3524
https://doi.org/10.1016/j.biosystemseng.2015.12.008
https://doi.org/10.1016/j.biosystemseng.2015.12.008
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref18
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref18
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref18
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref18
https://doi.org/10.14358/PERS.69.6.665
https://doi.org/10.14358/PERS.69.6.665
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2011.11.026
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref21
http://refhub.elsevier.com/S1537-5110(17)31015-2/sref21
https://doi.org/10.1016/j.biosystemseng.2018.04.020
https://doi.org/10.1016/j.biosystemseng.2018.04.020


b i o s y s t em s e ng i n e e r i n g 1 7 1 ( 2 0 1 8 ) 1 7 9e1 9 2 191
Gholap, J., Ingole, A., Gohil, J., Gargade, S., & Attar, V. (2012). Soil
data analysis using classification techniques and soil attribute
prediction. International Journal of Computer Science Issues, 9(3),
415e418.

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a
green channel in remote sensing of global vegetation from
EOS-MODIS. Remote Sensing of Environment, 58, 289e298.
https://doi.org/10.1016/S0034-4257(96)00072-7.

Gitelson, A. A., & Merzlyak, M. N. (1994). Spectral reflectance
changes associated with autumn senescence of Aesculus
hippocastanum L. and Acer platanoides L. leaves e Spectral
features and relation to chlorophyll estimation. Journal of Plant
Physiology, 143, 286e292. https://doi.org/10.1016/S0176-
1617(11)81633-0.

Gonzalez-Sanchez, A. (2014). Predictive ability of machine
learning methods for massive crop yield prediction. Spanish
Journal of Agricultural Research, 12, 313e328. https://doi.org/
10.5424/sjar/2014122-4439.

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., &
Strachan, I. B. (2004). Hyperspectral vegetation indices and
novel algorithms for predicting green LAI of crop canopies:
Modeling and validation in the context of precision
agriculture. Remote Sensing of Environment, 90, 337e352. https://
doi.org/10.1016/j.rse.2003.12.013.

Hamar, D., Ferencz, C., Lichtenberger, J., Tarcsai, G., & Ferencz-
Arkos, I. (1996). Yield estimation for corn and wheat in the
Hungarian Great Plain using Landsat MSS data. International
Journal of Remote Sensing, 17, 1689e1699. https://doi.org/
10.1080/01431169608948732.

Hatfield, J. L., Gitelson, A. A., Schepers, J. S., & Walthall, C. L.
(2008). Application of spectral remote sensing for agronomic
decisions. Agronomy Journal. https://doi.org/10.2134/
agronj2006.0370c.

Imran, M., Zurita-Milla, R., & Stein, A. (2013). Modeling crop yield
in West e African rainfed agriculture using global and local
spatial regression. Agronomy Journal, 105, 1177e1188.

Jaynes, D. B., & Colvin, T. S. (1997). Spatiotemporal variability of
corn and soybean yield. Agronomy Journal, 89, 30e37.

Jin, Z., Azzari, G., Burke, M., Aston, S., & Lobell, D. (2017). Mapping
smallholder yield heterogeneity at multiple scales in Eastern
Africa. Remote Sensing, 9(9), 931. https://doi.org/10.3390/
rs9090931.

Johnson, D. M., & Mueller, R. (2010). The 2009 cropland data layer.
Photogrammetric Engineering and Remote Sensing, 76, 1201e1205.

Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology
and evolution. Trends in Ecology & Evolution, 19, 101e108.
https://doi.org/10.1016/j.tree.2003.10.013.

Kantanantha, N., Serban, N., & Griffin, P. (2010). Yield and price
for stochastic crop decision planning. Journal of Agricultural,
Biological, and Environmental Statistics, 15, 362e380. https://
doi.org/10.1007/s13253-010-0025-7.

Leiser, W. L., Rattunde, H. F., Piepho, H. P., & Parzies, H. K. (2012).
Getting the most out of sorghum low-input field trials in West
Africa using spatial adjustment. Journal of Agronomy and Crop
Science, 198, 349e359. https://doi.org/10.1111/j.1439-
037X.2012.00529.x.

Lobell, D. B. (2013). The use of satellite data for crop yield gap
analysis. Field Crops Research, 143, 56e64. https://doi.org/
10.1016/j.fcr.2012.08.008.

Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). A
scalable satellite-based crop yield mapper. Remote Sensing of
Environment, 164, 324e333. https://doi.org/10.1016/
j.rse.2015.04.021.

Lopresti, M. F., Di Bella, C. M., & Degioanni, A. J. (2015).
Relationship between MODIS-NDVI data and wheat yield: A
case study in Northern Buenos Aires province, Argentina.
Information Processing in Agriculture, 2(2), 73e84.
Minuzzi, R. B., & Lopes, F. Z. (2015). Desempenho agronômico do
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