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Abstract: 

BACKGROUND: Site-specific weed management (SSWM) demands higher resolution 

data for mapping weeds in fields, but the success of this tool relies on the efficiency of 

optical sensors to discriminate weeds relative to other targets (soils, and residues) before 

cash crop establishment. The objectives of this study were to i) evaluate the accuracy of 

spectral bands to differentiate weeds (target) and other non-targets; ii) access vegetation 

indices (VIs) to assist in the discrimination process; and iii) evaluate the accuracy of the 

thresholds to distinguish weeds relative to non-targets for each VI using training and 

validation data sets. 

RESULTS: The main outcomes of this study for effectively distinguishing weeds from 

other non-targets are: (i) training and validation data exhibited similar spectral curves; (ii) 

red and near-infrared (NIR) spectral bands presented greater accuracy relative to the other 

bands; (iii) the tested VIs increased the discrimination accuracy related to single bands, with 

an overall accuracy above 95% and a kappa above 0.93. 

CONCLUSION: This study provided a novel approach to distinguish weeds from other 

non-targets utilizing a ground-level sensor before cash crop planting based on field spectral 

data. However, the limitations of this study are related to the spatial resolution to distinguish 

weeds that might be closer to the one this study presented, and also related to the soil and 

crop residues conditions at the time of collecting the readings.  Overall the results presented 

contribute to an improved understanding of spectral signatures from different targets 

(weeds, soils, and residues) before planting time supporting SSWM. 

Keywords: site-specific weed management (SSWM); spectral curves, spectral bands; 
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1 Introduction 

Weeds reduce crop growth and yield by competing with field crops for environmental 

resources such as light, water, and nutrients.1,2,3 The cash crop yield reduction is increased 

when weed competition occurs in early growth stages. In overall, weed infestation 

contribute to the largest potential yield losses (34%) relative to other plant pests such as 

insects or pathogens.4,5 

Generally, the distribution of weeds in a crop field are in patches;6-7 however, herbicides 

are applied uniformly across fields. Chemical methods such as the use of herbicides is the 

most effective for weed control in modern agriculture.9 The concept of site-specific weed 

management (SSWM) has the bias to cope with the heterogeneity occurring within fields 

by treating only weed patches.10 The SSWM may result in lower use of herbicides with 

reduction in environmental hazard, and can save input costs, depending on the level of weed 

infestation.10 Previous studies reported that with SSWM, herbicide savings range from 53 

to 75% relative to uniformly applied herbicide across the field.11,12 

Conventional weed mapping operations are costly in commercial large-scale farms and 

time-consuming in small farms.13,14 Use of remote sensing, more specifically, sensor-based 

systems can offer an alternative (e.g., SSWM) to conventional weed mapping. Use of the 

ground-level hyperspectral systems to scout weeds presents benefits such as non-contact 

detection, fast response, high reliability, and low power consumption, making this method 

a simple and easy real-time procedure.15-19  

Distinguishing weeds relative to other non-targets, such as crop residues and types of 

soil (e.g., textural classes), for pre-planting applications is of great interest to improve weed 
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identification and therefore, effective weed control in site specific management. Previous 

studies have found that the use of spectral bands help to differentiate plants from other non-

targets.20 Huete et al. reported the spectral response of a plant canopy with different soil 

backgrounds.21 Langner et al.  utilizing a camera, reported a special vegetation index (VI), 

which has a red threshold criterion aggregate in the normalized difference vegetation 

index (NDVI) calculation.22 Scotford and Miller investigated the utilization of spectral 

reflectance techniques using vegetation and soil spectral curves.16 Therefore, testing spectral 

bands and/or VIs and setting thresholds for distinguishing weeds using ground-level sensors 

is a key strategy to improve identification of weedy patches.15 

Plant leaves and canopy, in general, are mainly affected by plant pigments including 

chlorophyll (e.g., chlorophyll a and b), carotenes and xanthophylls in visible light 

reflectance.23-25 The combination of chlorophyll, a strong scattering of light, and internal 

cellular plant structure affect the red-edge band reflectance.24,26 In the near infrared (NIR) 

band, internal leaf structure and multiple leaf layers influence the reflectance properties of 

the canopy.23,24,27 In senescent plants, the chlorophyll can gradually show a decrease in the 

content which has greater reflectance in blue and red bands.25,28,29 

Recording hyperspectral information about different targets when scouting for weeds 

can be a challenge, due to the high amount of auto correlated data. For that reason, in recent 

years, multivariate analyses, such as linear discrimination, have been employed to 

discriminate crops versus weeds.30-32 Decision tree-based analyses are another class of 

algorithms that have the potential for helping researches to interpret hyperspectral data. 

Conditional inference tree is a decision tree algorithm for recursive binary splitting. It 

embeds the framework in a well-defined statistical environment based on permutation tests, 
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attempting to distinguish between significant and insignificant improvements.33 Random 

forests algorithm is one of the most powerful machine-learning techniques.34 Recent studies 

utilized random forest in remote sensing with multiple applications such as land cover 

classification, tree species mapping, and vegetation classification.27,35,36 Therefore, these 

techniques can greatly contribute to the identification of spectral bands for discriminating 

weeds versus other non-targets such as soil and plant residue.  

The objectives of this study were to: i) evaluate the accuracy of spectral bands to 

discriminate weeds and other targets (soils and residues) in pre-planting applications 

utilizing ground-level sensing; ii) access VIs to assist in the discrimination between weeds 

and other non-targets; iii) evaluate the accuracy improvement of the thresholds to 

distinguish the weeds relative to other non-targets for each VI using training and validation 

data sets. 

 

2. Materials and Methods  

2.1 Training dataset 

Two sources of data were collected and used in this study, i) field trials (herein termed 

as ‘training data’), and ii) on-farm (herein termed as ‘validation data’) data. Training data 

were collected from a field trial carried out during the 2016/17 soybean growing season 

(November 2016 to April 2017) at the Federal University of Santa Maria, Rio Grande do 

Sul, Brazil. The study comprises of eight species (seven weeds and one cash crop): 

Amaranthus hybridus L., Bidens pilosa L., Brachiaria plantaginea (Link) Hitchc., 

Euphorbia heterophylla L., Glycine max (L.) Merr. (soybean), Ipomoea grandifolia 

(Dammer) O'Donell, Panicum maximum Jacq., and Sida rhombifolia L. The experimental 
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design was completely randomized with four replications. The plot dimensions were 3 x 2 

m. All species were sown on November 10th in a four-row arrangement with 0.5 m between 

rows. The plant density was adjusted to 300,000 plants ha-1 for each specie trough manual 

plant thinning. 

In order to perform the crop residue (mulch) readings, corn (Zea mays L.), soybean, 

and black oat (Avena sativa L.) were all grown during the 2016/17 season, and after crop 

harvest, the measurements were done. Measurements in all three types of crop residues were 

collected to form the target residue. In the field trials, we collected soil samples at 0.10 m 

depth to identify the soil texture, and classified as sandy soil (clay 18%, silt 22% and sand 

60%), according to the United States Department of Agriculture (USDA) soil texture 

triangle.37 

 

2.2 Validation dataset 

The validation data set was built by collecting radiometer readings at five on-farm sites 

located in a radius of 200 km (Não-Me-Toque, Tapera, Cruz Alta, Júlio de Castilhos and 

Itaara counties) (Fig. 1). Evaluations were carried in those fields from February 2016 until 

March 2018. The radiometer readings of weeds were collected over two years, in both 

summer and winter crops, to compose the data set for validation. In addition, radiometer 

readings were collected from sandy soil sample, residues as well as a different soil type 

(clay 58%, silt 22%, and sand 20%), classified as clay soil, based on the soil texture 

triangle.37 

 

2.3 Data collection 
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Reflectance was measured utilizing the FieldSpec® HandHeld 2TM ASD Inc. 

spectroradiometer (passive sensor with evaluations collected in the zenith position, 0.3 m 

from the target) ranging from 325 to 1075 nm, with an accuracy of ±1 nm and a resolution 

of <3 nm at 700 nm. The sensor used to collect all the spectral data has a 25-degree full 

conical angle field-of-view, capable of collecting spectral data of 277.71 cm² for each 

measure. The readings were performed in points only on sunny days, in the absence of 

clouds at noon (12 pm). Before starting the measurements, and every half hour the sensor 

was properly calibrated with Spectralon® board following the manufacturer 

recommendations.38 

In the field trials (training data), all weeds and crops were evaluated at three different 

phenological growth stages according to the BBCH scale:39 stage 13 (3 leaves); stage 17 (7 

leaves); and stage 51 (inflorescence or flower buds visible). For all the on-farm sites, plants 

phenological growth stages ranged from 11 (1 leaf) to 59 (first flower petals visible). 

For the field research data, 393 radiometer weed readings were collected, and for the 

on-farm fields, 248 weed readings. Additionally, 75 radiometer readings were collected 

from crop residues (soybean, corn, and black oats mulch), 30 readings from clay soil, and 

39 readings from sandy soil in field research and on-farm fields (Table 1). The readings 

were collected taking full (100%) of field-of-view of each target/non-target.  

 

2.4 Data analyses 

The framework of the data analyses is presented in Figure 2. The Linear discriminant 

analysis (LDA) (only using training data) was executed to separate classes among the targets 

evaluated in this study when using the full electromagnetic spectrum. Discriminant analysis, 
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a multivariate technique, was utilized to separate groups based on the measured k variables 

in each sample, finding one or more linear combinations of the selected variables.40 The 

ade4 package was used to perform the analysis within the R environment.41,42 

Considering that most of the spectral sensors developed for agricultural purposes (e.g., 

GreenSeeker®, WeedSeeker®, OptRx®, WEEDit®) have a limited radiometer resolution, 

recording only a few bands or VIs relative to the FieldSpec, individual wavelengths 

(recorded by FieldSpec) were grouped in order to form spectral bands (Table 2). The 

definition of the spectral bands was based on the spectral bands from WorldView-2, which 

agrees with the critical spectral bands identified for future spectral capabilities to satellites.43 

All spectral bands (only using training data) were subjected to conditional inference 

tree analysis within the partykit package in R in order to select spectral bands that allow a 

more evident separation between weeds and other targets.44 These analysis are based on 

hierarchically ordered and recursively repeated binary splits, where the strength of each 

association is measured by a P-value. The terminal nodes account for the final subset of 

density points in each target. One of the main advantages of this technique is the possibility 

of exploration of complex interactions with control over overfitting issues.45 

Random forest analysis (using both training and validation data) was performed using 

randomForest package in R to analyze the separation capacity of the targets by the selected 

bands.46 Mean decrease accuracy (MDA) was assessed to select the most important spectral 

bands to accomplish VIs. The MDA utilizes permuting out-of-bag (OOB) samples to 

compute the importance of the variable. The OOB sample is the set of observations which 

are not used for building the current tree. It is used to estimate the prediction error and to 
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evaluate variable importance.46,47 The OOB is the mean prediction error on each training 

sample, using only the trees that did not have in their bootstrap sample.47 

To test if the data collected in the field trial is comparable with the one gathered from 

the on-farm sites, the average, minimum and maximum spectral curves were plotted.   

Lastly, the VIs: enhanced vegetation index (EVI), enhanced vegetation index 2 (EVI2), 

optimized soil adjusted vegetation index (OSAVI), soil adjusted vegetation index (SAVI), 

normalized difference vegetation index (NDVI), difference between NIR and RED (NIR-

RED), and ratio between NIR and RED (NIR/RED) (Table 3) were determined to test the 

potential of combination of the different spectral bands as well as to improve the accuracy 

in weed discrimination relative to the other targets, once no commercial sensors may 

calculate and compare all those VIs. As a criterion, overall accuracy and kappa coefficients 

were performed using the caret package.48  

 

3 Results 

3.1 Spectral curves 

Reflectance readings (average) and its variation (minimum to maximum) for each 

target, i.e., weeds, residue, clay, and sandy soils were recorded (Fig. 3). The living plants 

(weeds) presented the highest reflectance in the green band (501-565 nm) and absorption 

peaks at blue (441-485 nm) and red (626-690 nm) bands in the visible light. The red edge 

(691-750 nm) band presented a broad rate of variation (minimum to maximum) in the 

spectral curves. The NIR band presented the highest reflectance for weeds, with a broad 

range of variation, relative to the soil texture (clay and sandy) and residue types (Fig. 3). 

The crops residues and soil types presented the narrowest variation on the spectral 
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reflectance curves, with the reflectance rising as the wavelength increases from 400 nm 

onwards (to 900 nm). Among the soils type, sandy soil texture presented the highest 

reflectance values compared to clay soil. 

 

3.2 Comparison between field trial and on-farm fields 

The reflectance for weeds, crop residues, and sandy soil were greater for the field trial 

relative to the on-farm sites, but overall there was an overlap between the curves without 

reflecting a significant difference in mean values of the spectral curves for the classes 

between these two data sources evaluated in this study (Fig. 4). The target clay soil was 

collected only in on-farm fields. 

 

3.3 Linear discriminant analysis (LDA) 

The LDA was able to differentiate all the targets (weeds, residue, and sandy soil) (Fig. 

5). There was no overlapping among classes, indicating a high degree of separation when 

considering the full-electromagnetic spectrum. 

 

3.4 Conditional inference tree analysis 

Conditional inference tree analysis resulted in four inner nodes (1, 2, 5, and 7) and five 

terminal nodes (3, 4, 6, 8, and 9) (Fig. 6). The spectral bands differentiating classes were: 

red, NIR, red edge and green (Fig. 6). The class for weeds was identified and separated by 

the bands red (inner node 1) and NIR (inner node 2). The conditions applied to classify the 

target as weeds were: red ≤ 0.13 and NIR > 0.233. Following these conditions (nodes), a 

total of 99.5% of all the radiometric readings from the weeds were obtained in the terminal 
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node 4. For the sandy soil, three spectral bands were used: red (inner node 1), red edge 

(inner node 5) and green (inner node 7). For this soil texture, the classification conditions 

were red > 0.13, red edge > 0.266 and green ≤ 0.144, obtaining 100% of the total sandy soil 

database in the terminal node 8. Residues were obtained overlapping of targets in their 

classification (nodes 3, 6 and 9). For most of the crop residue (77.3%), the classification 

occurred with the bands: red > 0.13 and red edge ≤ 0.266, terminal node 6 (Fig. 6). 

 

3.5 Random forest analysis (training and validation data studies) 

For the random forest analysis confirmed for both data sets that the red and NIR bands 

are of great relevancy when identifying weeds versus other targets, as reported by the MDA 

(Fig. 7). After removing the red spectral band, the model accuracy decreased to the value 

31.0% followed by the spectral band NIR with the accuracy 19.8% (Fig 7). The other 

spectral bands presented lower impacts on model performance relative to both red and NIR 

bands.  

 

3.6 Vegetation indices 

The VIs: EVI, EVI2, OSAVI, SAVI, NDVI, NIR-RED, and NIR/RED improved the 

discrimination of weeds relative to the other targets in comparison with the utilization of the 

isolated spectral bands. The values of each index had no overlap between weeds and the 

other targets (Fig. 8) for the training data.  

Conditional inference trees with training data were developed for each index separately 

in order to compare their capacity of discriminating weeds from other targets and to establish 

VI-specific thresholds (Fig. 9). The EVI had 0.138 as a threshold value, EVI2 had 0.221, 
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OSAVI had 0.166, SAVI had 0.162, NDVI had 0.197, NIR - RED had 0.137, and NIR/RED 

had 1.485.  

The thresholds from the training data were applied over the validation data in order to 

calculate the overall accuracy and kappa coefficients from the confusion matrix. The OSAVI 

had 100% of overall accuracy and kappa equal 1, and the other indices: EVI, EVI2, SAVI, 

NDVI, NIR – RED and NIR/RED also presented high values of accuracy, with overall 

accuracy > 95%, and kappa > 0.93 (Table 4). 

 

4 Discussion 

Remote sensing of weeds relative to other targets before soybean planting is a newer 

approach with potential of weed management improvement by reducing environmental risk 

and cutting cost. To full perform SSWM, it is necessary to discriminate accurately weeds 

from other targets in order to allow only target spraying (applying herbicide only where it 

is necessary).8 Discrimination of weeds relative to other targets can be assessed at pre-

planting and, in early and late during the growing season, at post-emergence applications. 

Researchers have been studying alternatives to discriminate plants relative to soil targets, 

such as the use of different VIs from multispectral cameras.22,51,52 More recently, remote 

sensing was used to distinguish weeds relative to cash crops, such as corn, cabbage 

(Brassica olearacea var. capitata), sugar beet (Beta vulgaris L.) and soybean.15,18,27,32,55,56 

Several studies have provided insights for developing sprayers based on the SSWM 

approach, with limitations mainly related to identify weeds and the spatial resolution for 

discriminating other non-target.6,72,73 
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Considering the scientific literature on spectral information for different targets before 

planting, an important outcome of this study was related to the similarity of spectral curves 

between training (field trial) and validation (on-farm) data sets, to assess weeds, soil texture, 

and crop residues. This relevant finding shows that hyperspectral data collected in 

experimental and on-farm conditions (training and validation data) can be used to develop 

models to discriminate weeds from other targets in field condition. Plant canopy reflectance 

is governed by the concentration and distribution of biochemical compounds, internal 

structure of the tissue, as well as the leaf surface properties.27 Daughtry reported that spectral 

curves of three different crop residues and five soil types had similar behavior but differ 

only in their amplitude of reflectance.57 The reflectance of soils and crop residues rising as 

the wavelength increase from 400 nm onwards to 900 nm. Thus, the reflectance is generally 

lower in the visible range (400-690 nm) and higher in the NIR region (691-900 nm) in these 

selected targets.58 Soil texture has high reflectance for sandy soils, most likely due to the 

high amount of quartz in the sand fraction, increasing the intensity of spectral 

reflectance.58,59  

The second outcome of this study was connected to perfect discrimination among 

weeds and the other non-targets - residues, sandy and clay texture soils - using all 

wavelengths reported by the LDA approach. Spectral curves often carry a more detailed 

information compared to wavelength aggregated in spectral bands.27 The LDA has been 

recently used for hyperspectral data target classification.30-32 Conditional inference tree and 

random forest analyses reported that red and NIR bands were the most important spectral 

bands to discriminate weeds relative to other targets. Similar results were reported by 

Rondeaux et al.  in a study with vegetation and soil reflectances.51 According to Langner et 
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al. the reflectance of green vegetation is very low in the red band, in contrast with the high 

reflectance in NIR.22 Soils on the other hand, have a reflectance with minimum difference 

between red and NIR bands. The results are in line with the commercial sensors that use the 

red and NIR spectral bands to weed identification.60 

The selection of VIs was defined related to their relevancy for agricultural purposes, 

composing the spectral bands which had the greater values to distinguish weeds relative to 

other targets (spectral bands: red and NIR).61 Using VIs relative to the individual spectral 

bands improved the performance (overall accuracy and kappa coefficient) for discriminating 

weeds. The third outcome of this study was related to the ability of the indices: EVI, EVI2, 

OSAVI, SAVI, NDVI, NIR - RED and NIR/RED to discriminate weeds from other targets. 

The VIs are related to several properties of plants and those VIs are frequently used to other 

aims as disease detection, plant stress, nutrition, yield forecast and phenology.61-66 

From all the VIs tested on this study, OSAVI presented the greatest accuracy when 

comparing training and validation data sets. The OSAVI was built to optimized soil-adjusted 

vegetation index (SAVI) with the aim of reducing the sensitivity of the NDVI to soil 

background and atmospheric effects.51,52 Recently, the OSAVI has also been used for canopy 

stress detection, chlorophyll content estimation, monitoring nitrogen (N) status and 

estimating vegetal biomass and canopy coverage.67-71 However, all the VIs tested on this 

study presented high values of accuracy, effectively distinguishing weeds relative to other 

targets before planting (with 277.71 cm² of spatial resolution). 

One of the constraints of this study was related to the spatial resolution utilized with 

the sensor for collecting the spectral data, limiting the extrapolation of this information to 

lower scale of spatial resolution. Another limitation is related to the soil and crop residues 
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conditions at the time of collecting the readings. The spectral curves of soil and residues 

were determined by the cumulative property resulting from heterogenic combinations of 

mineral and organic material and their moisture.74,75 Daughtry showed that crop residues 

and soil have similar behavior for the spectral curves under different water content, but both 

targets presented an increase in the reflectance values when the presented contrasting 

moisture levels (dry vs. wet conditions).57 This complex interaction between the targets and 

the environmental conditions should be explored in future studies.  

The next step on SSWM studies will be to aggregate different spatial resolutions with 

multiples platforms (such as satellites, unmanned aerial vehicle (UAV) and proximal 

sensors) to analyze the influence the VIs when considered several weed densities in pre-

planting cash crop. In addition, future investigations should look into the performance of 

the remote sensing tools for identifying weeds when considering more environmental and 

soil factors as variables to be included in the analyses. 

 

5 Conclusions 

The results of this research provided useful pre-planting data source for distinguishing 

weeds related to other targets using high spatial resolution ground-sensing. The findings 

could support further field applications of spectral data in the field for improving SSWM. 

The main outcomes of this study were that: (i) spectral curves of weeds, sandy soil, and 

crop residues were similar for both training and validation data sets permitting evaluate a 

large database for discriminating weeds relative to other targets; (ii) spectral bands, red and 

NIR had greater values of accuracy to discriminate weeds relative to crop residues, sandy 

and clay texture soils; (iii) the VIs: EVI, EVI2, OSAVI, SAVI, NDVI, NIR - RED and 
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NIR/RED had the greater values of accuracy to discriminate weeds relative to others targets 

when compared with single spectral bands.  

The thresholds of VIs defined in this study might provide values of classification of 

weeds relative to other targets in the fields using multiples alternatives sensors according 

with the presented results. 
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Tables: 

Table 1 The number of readings for each target evaluated in field trial and on-farm fields 

(5 total). 

Target Field trial Field 1 Field 2  Field 3 Field 4 Field 5  
Amaranthus hybridus 52 - - - - 9 

Avena sativa  - - - - 9 - 
Avena strigosa Schreb. - - - - 9 - 

Bidens Pilosa  52 - - - - - 
Brachiaria plantaginea 48 - - - - - 

Brassica napus L. - - - - 9 - 
Conyza bonariensis L. - 9 9 - - - 

Echium plantagineum L. - - - - 9 - 
Euphorbia heterophylla 52 - - - - - 

Glycine max 34 - - 41 - - 
Ipomoea grandifolia  52 - - - - - 

Lollium multiflorum Lam. - - - - 36 - 
Panicum maximum  51 - - - - - 

Polygonum convolvulus L. - 9 - - - 9 
Raphanus silvestris Lam. - - - - 9 - 

Richardia brasiliensis 
Gomes 

- - 9 - - - 

Sida rhombifolia 52 9 - - 9 - 
Solanum americanum Mill. - 9 - - 9 18 

Sonchus oleraceus L. - - - - 9 - 
Triticum aestivum L. - - - - 9 - 

Total Weeds 393 36 18 41 117 36 
Residues 25 - - 50 - - 
Clay soil - 20 10 - - - 

Sandy soil 39 - - - - - 
Field trial: Santa Maria; On-farm fields, Field 1: Não-Me-Toque; Field 2: Tapera; Field 3: 

Cruz Alta; Field 4: Júlio de Castilhos; Field 5: Itaara. 

 

Table 2 Separation of wavelengths in spectral bands. Centered refers to the medium 

wavelength of each spectral band. 
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Band Centered Range 
Coastal blue 425 400-450 

Blue 480 450-510 
Green 545 510-580 
Yellow 605 585-625 

Red 660 630-690 
Red edge 725 705-745 

Near infrared (NIR) 835 770-900 
 

Table 3 Vegetation indices and their respective equations evaluated in this study.  

Index Equation Reference 
EVI 2.5(RNIR – RRed) / (RNIR + 6RRed -7.5RBlue + 1) Huete et al. 49 
EVI2 2.4 (RNIR – RRed) / (RNIR + RRed + 1) Jiang et al. 50 

OSAVI  1.16(RNIR – RRed) / (RNIR – RRed + 0.16) Rondeaux et al. 51 
SAVI 1.5(RNIR – RRed) / (RNIR – RRed + 0.5) Huete 52 
NDVI (RNIR – RRed) / (RNIR + RRed) Rouse et al. 53 

NIR - RED RNIR - RRed Vogelmann et al. 54 
NIR / RED RNIR / RRed Vogelmann et al. 54 

R = reflectance. 

 

Table 4 Statistics of training threshold when analyzed the validation data.  

Index Statistics 

EVI Overall accuracy 98.5% 
Kappa 0.97 

EVI2 Overall accuracy 
Kappa 

98.1% 
0.97 

OSAVI Overall accuracy 100% 
Kappa 1 

SAVI Overall accuracy 99.2% 
Kappa 0.98 

NDVI Overall accuracy 95.6% 
Kappa 0.93 

NIR - RED Overall accuracy 98.1% 
Kappa 0.97 

NIR/RED Overall accuracy 95.3% 
Kappa 0.93 
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Figures: 
 

 
Fig. 1 - Field trials were located in the South of Brazil, the Rio Grande do Sul, comprising 

a training (one field study, Santa Maria) and validation data sets (five on-farm fields). 
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Fig. 2 - Theoretical framework for the study. 
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Fig. 3 - Spectral reflectance curves (mean, minimum and maximum) for weeds, residue, 

and soil type (clay, sandy) classes for the range of wavelength from 400 to 900 nm for the 

field trial. 
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Fig. 4 - Comparison of training (data from one field trial) and validation (data from five on-

farm sites) spectral curves, portraying minimum and maximum spectral curves, for the 

weeds class (A), residues (B), and sandy soil (C). 
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Fig. 5 - Linear discriminant analysis (LDA) for all the classes evaluated in this study for 

the field research (residue, sandy soil, and weeds). Ellipses represent the confidence regions 

around the mean of canonical scores at the 95% confidence level. 
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Fig. 6 - Conditional inference tree analysis using the bands: coastal blue, blue, green, 

yellow, red, red edge, and near-infrared. Bars at the bottom of the figure represent the 

density of points for each target. The values of conditions for classification are reflectance 

values. 
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Fig. 7 - Mean decrease accuracy (MDA) of the spectral bands utilizing training and 

validation data in random forest analysis. 
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Fig. 8 - Boxplot representing data distribution for different bands and indices for training 

data. The lower and upper hinges correspond to the first and third quartiles (the 25th and 

75th percentiles). The upper whisker extends from the hinge to the largest value no further 

than 1.5 * inter-quartile range (IQR) from the hinge. The lower whisker extends from the 

hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the 

whiskers are considered outliers. NIR/RED values were divided by 15 to better fit in y axis. 
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Fig. 9 - Condition inference tree of EVI (A), EVI2 (B), OSAVI (C), SAVI (D), NDVI (E), 

NIR – RED (F) and NIR/RED (G).  
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