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A B S T R A C T

Soybean yield predictions in Brazil are of great interest for market behavior, to drive governmental policies and
to increase global food security. In Brazil soybean yield data generally demand various revisions through the
following months after harvest suggesting that there is space for improving the accuracy and the time of yield
predictions. This study presents a novel model to perform in-season (“near real-time”) soybean yield forecasts in
southern Brazil using Long-Short Term Memory (LSTM), Neural Networks, satellite imagery and weather data.
The objectives of this study were to: (i) compare the performance of three different algorithms (multivariate OLS
linear regression, random forest and LSTM neural networks) for forecasting soybean yield using NDVI, EVI, land
surface temperature and precipitation as independent variables, and (ii) evaluate how early (during the soybean
growing season) this method is able to forecast yield with reasonable accuracy. Satellite and weather data were
masked using a non-crop-specific layer with field boundaries obtained from the Rural Environment Registry that
is mandatory for all farmers in Brazil. Main outcomes from this study were: (i) soybean yield forecasts at mu-
nicipality-scale with a mean absolute error (MAE) of 0.24 Mg ha−1 at DOY 64 (march 5) (ii) a superior per-
formance of the LSTM neural networks relative to the other algorithms for all the forecast dates except DOY 16
where multivariate OLS linear regression provided the best performance, and (iii) model performance (e.g.,
MAE) for yield forecast decreased when predictions were performed earlier in the season, with MAE increasing
from 0.24 Mg ha−1 to 0.42 Mg ha−1 (last values from OLS regression) when forecast timing changed from DOY
64 (March 5) to DOY 16 (January 6). This research portrays the benefits of integrating statistical techniques,
remote sensing, weather to field survey data in order to perform more reliable in-season soybean yield forecasts.

1. Introduction

Soybean [Glycine max (L.) Merrill] represents one of the world's
most important sources of protein and oil, with four countries, US,
Brazil, Argentina, and China, accounting for approximately 90% of the
total global production (Embrapa, 2018; USDA, 2019). Brazil is cur-
rently the second largest soybean producer, only behind the US, con-
tributing to ~34.7% of the global production. As a consequence, the
soybean production from Brazil has a large impact on the global
market, with seasonal fluctuations on production impacting the fi-
nancial market.

In Brazil, there are two institutions responsible for providing data
about the status of the crops, the National Supply Company (Conab)
and the Brazilian Institute of Geography and Statistics (IBGE). Both
Conab and IBGE are primarily based on field surveys and they release
annually yield forecasts (before harvest) on a state-level and estima-
tions (after harvest) on a municipality-level (the last is released only by
IBGE). Alternatively, with the advent of new cloud platforms such as
Google Earth Engine (GEE) (Gorelick et al., 2017) providing an easier
way to access large volumes of satellite and weather data, and dra-
matically increasing processing power through parallel computing re-
sources, satellite imagery became an easy alternative for providing
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yield forecasts over larger domains in a near real-time basis. Research
have repeatedly shown the potential of satellite imagery on providing
quantitative data about yield worldwide (Ferencz et al., 2004;
Hamada et al., 2015; Lobell, 2013; Peralta et al., 2016;
Schwalbert et al., 2018), and improved model performance has been
documented when weather data is effectively integrated on the esti-
mations (Cai et al., 2019; Johnson, 2014; Lobell et al., 2015; Peng et al.,
2018).

Along with the increase in computational processing power, more
complex algorithms to data analysis also have become more popular
when exploring larger and spatio-temporal datasets. Empirical re-
lationships between soybean yield, canopy reflectance, and weather
data usually present non-linearities (Johnson et al., 2016), and yield
forecast models using a collection of those variables recorded over time
are prone to over-fitting due to a high degree of autocorrelation. For
those reasons, machine learning algorithms are able to more robustly
deal with non-linearities against over-fitting. Those machine learning
algorithms such as random forest and the neural networks have been
successfully utilized to predict crop yield using remotely sensed vege-
tation indices (Alvarez, 2009; Cai et al., 2019; Johnson et al., 2016;
Khaki and Wang, 2019; Li et al., 2013; Drummond et al., 2013;
Shao et al., 2015). Random forest is an ensemble classifier that boot-
straps training samples and variables to produce multiple decision trees
performing predictions after aggregating the results from individual
trees; this process is also known as bagging (Breiman, 2001). The neural
networks consist of layers of highly interconnected processing units
(neurons). The data moves throughout those layers across weighed
connections, and each inner neuron is associated with an activation
function, usually responsible for a non-linear transformation (Cai et al.,
2019). A specific variation of the neural network, known as Long-Short
Term Memory (LSTM) has been more recently noticed because of its
large capacity to deal with sequential data (Cunha et al., 2018;
You et al., 2017).

In addition to data processing, another challenge when performing
yield forecast over large domains is to access to the crop geolocations.
For some regions of the world such as the US, this information is easily
available since it is yearly released by the National Agricultural Statistic
Service (NASS) named Cropland Data Layer.. A 30-m resolution crop
specific gridded layer (Johnson and Mueller, 2010) that is largely em-
ployed as a relevant layer in studies aiming at forecasting crop yield in
the US (Johnson, 2014; Shao et al., 2015). In Brazil, such information is

not yet available, despite the efforts of the governmental agencies.
However, for most of the municipalities (similar to the county-level in
US) in Brazil, it is possible to access the field boundaries of permanent
agricultural fields from the Rural Environmental Registry (Cadastro
Ambiental Rural - CAR) (http://www.car.gov.br). This layer despite not
holding information related to crop types, provide an useful data source
for removing most part of the noise from the satellite imagery, coming
from areas that are not meaningful for agricultural purposes.

Thus, considering the importance of soybean in Brazil and its impact
on the global economy, and the evident lack of reliable yield in-
formation in near real-time basis, the implementation of a near-real
time yield forecast will provide a useful layer for agricultural purposes
and policy applications. Therefore, the objectives of this research were
to: i) compare the performance of three different algorithms (multi-
variate ordinary least square – OLS - linear regression, random forest
and LSTM neural network) for forecasting soybean yield using vegeta-
tion indices such as NDVI, EVI, and weather data such as land surface
temperature and precipitation as independent variables, and ii) eval-
uate how early (during the soybean growing season) this method is able
to forecast yield with reasonable accuracy.

2. Material and methods

2.1. Region selection

The study was conducted in the northern region of the Rio Grande
do Sul (RS) state, Brazil. This region was chosen due to: i) the high area
and frequency of soybean crop in the soybean-corn summer crop ro-
tation (85% of the cropland is allocated to soybean), and ii) since its
represents the largest contiguous cropland area in RS state (Fig. 1A).

2.2. Data sources

Historical municipality-level soybean yield data (2003–2016) was
obtained from IBGE (https://sidra.ibge.gov.br/pesquisa/pam/tabelas).
This database is released as a point information in a municipality (each
point is a municipality/year yield record) without geographical iden-
tification such as latitude and longitude. We used 80 municipalities
once we focused only in the ones with yield data available for the entire
period considered in the study.

Additionally, vegetation indices (VIs) from satellite imagery were

Fig. 1. (A) Annual International Geosphere-Biosphere Programme (IGBP) land cover classification generated by NASA LP DAAC (500 m - spatial resolution). Only
two classes (12 and 14 from original raster file) are highlighted, with percentage of the pixel covered with cropland ranging from 40 to 100%. (B) Example of file
available for downloading in CAR - Consolidated areas for the municipality of Não-Me-Toque, RS.
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obtained from MODIS Surface Reflectance products. Since we are
working on a large region, and we need to build a mosaic free of clouds
for the entire region, the available options for satellite data are limited.
The NASA Earth Observing System Data and Information System
(EOSDIS) provided 8- and 16-days mosaics on a near real-time basis
allowing to retrieve satellite data with minimal interference of clouds
with 250-m resolution. This cloud-freeness is the main reason to choose
the EOSDIS data for building our model. From those mosaics, we re-
trieved two VIs, the normalized difference vegetation index (NDVI)
(collection MODIS/006/MOD09Q1), and enhanced vegetation index
(EVI) (collection MODIS/006/MOD13Q1). Since EVI is released in a
lower image frequency (every 16 days) compare to the NDVI (every 8
days) we calculated the average between each two consecutive EVI
images in order to provide an EVI time series that matches with the
NDVI images.All the images from these two collections were gathered
between October 15 and March 5 (soybean planting and harvesting are
not in the same calendar year in Brazil) from 2002 to 2016.

Two additional variables were selected to be evaluated on the
models: daytime land surface temperature (LST), and precipitation. The
LST is a similar, but not exactly the same, measurement as more com-
monly collected air temperature. The two variables (LST and air tem-
perature) are strongly related, though, with LST having larger tem-
perature extremes and being locally dependent on the land cover type
(Mildrexler et al., 2011; Wan, 2008). The LST was produced from the 8-
day composited thermal product from Aqua satellite's MODIS sensor
(termed MYD11A2). Daily precipitation data was provided by the Cli-
mate Hazards Group Infrared Precipitation with Stations (CHIRPS)
dataset with resolution of ~5.5 km (Appendix A).

More details about the criteria used for selecting input variables for
composing the yield forecast model are provided in Appendix B.

2.3. Data collection and organization

Since Brazil does not have a crop-specific data layer for retrieving
geographical information about soybean field locations, we decided to
use the data from CAR (Appendix C). This information was downloaded
as individual shapefiles (one for each municipality considered in this
study), and then merged via R (R Core Team, 2017) in a unique file to
be uploaded on the GEE platform.

All the remote sensing and the weather data were gathered via GEE
using the CAR layer as a cropland mask. All the collected information
was organized in a table format and averaged to municipality level
before being merged with the yield data layer, comprising the first and
the second steps on the model development (Fig. 2).

2.4. Empirical relationships between yield, remote sensing and weather data

Three algorithms were tested to describe the relationship between
yield, VIs, LST, and precipitation: i) multivariate OLS linear regression,
ii) random forest, and iii) LSTM neural network. Multivariate OLS
model was chosen as a benchmark relative to the two machine learning
algorithms, since it represents the one of the simplest form to build
empirical relationships between dependent and independent variables.
Secondly, we chose the random forest model to explore non-linear
models. Random forests are easy to train, have low sensibility to out-
liers, high computational efficiency and robustness against over-fitting
(Belgiu and Drãgut, 2016). Lastly, we tested the model performance
using the LSTM neural network. The LSTM neural network are prepared
for receiving sequential data as an input and are able to extract im-
portant aspects related to the time series since it maintains a chain
structure with time steps, similar to the way that crop growth modeling
works. Each step takes information from previous step and outside
input (from feature space – new NDVI, EVI, LST and precipitation va-
lues), and provides output for the next step. Furthermore, during the
training process this algorithm is capable of retaining key information
of input signals, and ignore less important parts.

For multivariate OLS and random forest, two classes of predictors
were tested: i) the multi temporal EVI, NDVI, LST and precipitation, and
ii) the seasonal integrated EVI, NDVI, LST and precipitation (as cu-
mulative over the growing season). Therefore, for those two algorithms
the annual municipality-level soybean yield forecasting model can be
written as the following function:

= +y f(x ) eij ij ij (1)

where, yij is soybean yield for the ith municipality and jth year, x is the
user-selected vector of predictors, f is a user-selected computer algo-
rithm, and eij is error associated with the prediction.

The LSTM neural network received the two classes of inputs at the
same time, classified as dynamic and static data. The dynamic data
were related to the VIs, LST and precipitation time series, and were
organized in a 3D array (samples, time steps, and features). The static
data were the seasonal integrated variables. A concatenated layer was
used to deal with those different input dimensions (Appendix D).

For all the algorithms, model performance was evaluated using a
leave-one-year-out cross-validation approach and three metrics were
used to assess the model accuracy: the mean absolute error (MAE), the
mean squared error (MSE) and the root-mean squared error (RMSE)
(Appendix E).

2.5. Time series sensitivity analysis

For all the models, a sensitivity analysis was performed to check
how early in the crop growing season the forecasting yield model can be
implemented and its impact on the overall model performance. For this
purpose, data collected later during the growing season was subse-
quently removed from the model and the same validation approach
aforementioned was used to compute the MAE, MSE, and RMSE. Thus,
we tested the models using data until DOY 16 (January 16), DOY 32
(February 1), DOY 48 (February 17), and DOY 64 (March 5). We have
assumed the existence of a delay in the release of the yield forecast
models based on the process for uploading the MODIS product by
NASA, in approximately five days (Sakamoto et al., 2014).

The model training highlighted in the step 3 of the model devel-
opment framework (Fig. 2) was performed in the R environment using
the RandomForest (Liaw and Wiener, 2002) and the Keras
(Chollet, 2015) packages.

2.6. Relationship between model accuracy and yield/weather anomalies

Long-term yield data (1972–2017) for the entire region considered
in this study (average over all the municipalities) was collected from
IBGE. A regression analysis was performed using year as the in-
dependent variable and yield as the response variable. The residuals
from this relationship (yield anomalies) were used in a Monte Carlo
simulation in R program aiming at estimating the likelihood of any
particular event to occur. We assume that the yield anomalies follow a
normal distribution with mean and standard deviation estimated from
the data. Residuals from the fitted model were utilized instead of using
the absolute yield value to account for the genetic and technological
evolution over the years.

We repeated this task using weather data instead of yield, and for
doing that we extracted long-term (1982–2018) temperature and pre-
cipitation information from NASA POWER for all the municipalities
considered in this study. We used NASA POWER for this analysis in-
stead of MODIS and CHIRPS because MODIS only has information
available after 2000. This information was summarized in 8-days per-
iods (average for temperature and sum for precipitation). A Pearson
correlation was performed among all the 8-days periods for precipita-
tion and temperature, and yield in order to find a contiguous period of
high correlation between these weather variables and yield. After de-
fining this period, precipitation and temperature were summarized for
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the entire period and a Monte Carlo simulation was performed as-
suming that precipitation and temperature follow a multivariate normal
distribution with μ1, μ2 and Σ, where: μ1 is the precipitation mean, μ2 is
the temperature mean and Σ the variance-covariance matrix between
precipitation and temperature. We decide to use a bivariate normal
distribution instead a high dimensional distribution to avoid problems
related to the curse of dimensionality, when the dimension is large and
the sample size is moderate (Amato et al., 2013).

3. Results

3.1. Model performance at different forecast dates

Regardless of the date of the forecast, the seasonal integrated pre-
dictors outperformed the multi-temporal ones for multivariate OLS re-
gression and random forest (data not shown). As the soybean yield
forecasts were performed earlier in the growing season all the models
tended to become less accurate, and as we move towards the end of the
growing season all the three algorithms tended to become more asser-
tive, represented by the decreases in all the three metrics, MAE, MSE
and RMSE. Overall, the LSTM neural network presented the lowest
values for MAE, MSE, and RMSE, followed by the random forest, with
the OLS presenting a slightly inferior performance. The only exception
was the DOY 16, where the LSTM had the least accurate performance
among the three options, with the best performance for the multivariate
OLS (Table 1).

The observed versus predicted soybean yield for the four dates
tested in our model were explored using the best algorithm for each
specific date. Based on the data presented on Table 1, we used the
multivariate OLS regression model for DOY 16 and the LSTM for the
remaining dates (Fig. 3A–D). The overall soybean yield data distribu-
tion for RS, Brazil from 2003 to 2016 presented a wide range of values
from 0.2 to 4.2 Mg ha−1 with no evidence to reject the null hypothesis

that the sampled yield values came from a normally distributed popu-
lation (Shapiro-Wilk test p-value>0.05). The maximum likelihood es-
timation for the mean and standard deviation based on the data were
2.4 and 0.8 Mg ha−1 respectively.

Despite residuals have been equally distributed along the 1:1 line
considering all the years together for the predicted versus observed
yield models, this pattern was not followed when the years were ana-
lyzed individually. Years such as 2004 and 2005 presented an error
greater than the others, mainly for the early season forecasts (DOY 16
and 32) (Fig. 3). Moreover, after decomposing the MSE into its two
components, the squared bias and σ2, it can be seen that for the years
presenting a greater MSE, the highest contributions came from the
squared bias (lack of the capacity of the model to describe a specific
phenomenon, systematic error) and not from σ2 (non-systematic source
of error) (Fig. 3).

We calculated the cumulative probability frequency for the soybean
yield anomalies (residuals from the soybean yield-year relationship) for
the region considered in this study (Fig. 4A–C). The analyses showed
that years presenting the greatest anomalies tended to present the
highest MSE values, and consequently the highest values for squared

Fig. 2. Flowchart indicating all steps of the model development: 1-
data access, 2- data wrangling which includes masking gridded data
using CAR field boundaries and re-scaling the satellite and weather
data to municipality-level before merging it with the yield data, and
step 3- building the empirical relationships between soybean yield
and the predictors (enhanced vegetation index - EVI, normalized
difference vegetation index - NDVI, land surface temperature - LST,
and precipitation) for the three considered algorithms (multivariate
OLS, random forest, LSTM neural network), and selecting the best
model based on metrics (MAE, MSE, and RMSE) derived from a leave-
one-year-out cross validation.

Table 1
Model metrics comparison among multivariate OLS, random forest, and LSTM
neural network.

Day of year MAE (Mg ha−1) RMSE (Mg ha−1) MSE (kg ha−1)2

OLS RF LSTM OLS RF LSTM OLS RF LSTM

DOY16 0.42 0.46 0.52 0.53 0.57 0.68 0.28 0.33 0.46
DOY32 0.46 0.44 0.42 0.58 0.57 0.56 0.34 0.33 0.31
DOY48 0.40 0.37 0.25 0.50 0.48 0.32 0.25 0.23 0.10
DOY64 0.32 0.32 0.24 0.40 0.39 0.32 0.16 0.15 0.10

*Values presented for OLS (multivariate OLS regression) and RF (random
forest) are related to models using the seasonal integrated variables.
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bias (Fig. 4D). Moreover, it was demonstrated that the frequency of
occurrence of years with anomalies equal or higher than the one found
in 2005 year seems to be really negligible, ~0.7% or in other words 1 in
~142 years. Following a similar approach, but using weather data in-
stead of yield, we built a second probability density function based on
temperature and precipitation. For the second approach, we focused on
a specific period of the soybean growing season in Brazil - between DOY
360 and DOY 56 (usually from flowering to seed filling stages), where
these variables presented the highest correlation with yield (Fig. 4E).
Using this second approach the probability of occurrence for a year
with an anomaly equal or higher to 2005 year was 0.3%, close to the
0.7% (but even smaller) that we estimated using the first approach.

4. Discussion

Our results clearly showed that satellite imaging combined with
weather data can provide useful information to develop more accurate
models to forecast yields of soybean in Brazil. Crop yield forecast based
on satellite imagery have become a popular tool for providing near real-
time prediction of crop status from small (field and sub-field conditions)
(Azzari et al., 2016; Jin et al., 2019, 2017; Lobell et al., 2015;
Peralta et al., 2016; Schwalbert et al., 2018) to medium/large domains
(county/state) (Bolton and Friedl, 2013; Cai et al., 2019;
Johnson, 2014; Lobell, 2013; Peng et al., 2018; Sakamoto et al., 2014;
Shao et al., 2015). Furthermore, the integration of canopy reflectance
(sometimes summarized as VIs), LST and precipitation, have been de-
monstrated as a promising approach to enhance performance of yield
forecast models. In this study, the inclusion of additional variables such
as LST and precipitation decreased the MAE, RMSE, and MSE by 16, 15,
and 30%, respectively (averaged over all the dates for the OLS algo-
rithm) (Fig. 5 of Appendix F). The negative correlation of heat, vapor
pressure deficit, and the positive correlation of precipitation (Cai et al.,
2019; Johnson, 2014; Peng et al., 2018) have been successfully

explored in combination with multi-temporal VIs for providing more
accurate near real-time forecasts for different crops.

Most of the algorithms used for exploring relationships between
yield - multi-temporal VIs and weather variables rely on multivariate
OLS (Cai et al., 2019; Lobell et al., 2015; Sakamoto et al., 2014),
random forest (Cai et al., 2019; Shao et al., 2015), Rulequest Cubist,
(Johnson, 2014), or supported vector machine (Cai et al., 2019). De-
spite those algorithms usually presents a satisfactory performance for
the aforementioned task, they are not prepared for dealing with time-
ordered data. Since VIs, LST, and weather variables are inherently
temporal, with past state of these variables usually presenting on the
future cause-effect relationship, algorithms able of learning patterns
based on the sequence how the data is collected have a great potential
for outperforming algorithms that treat data in a static viewpoint. In
our study, the LSTM neural network outperformed the multivariate OLS
regression and random forest for all the tested dates except for the
earliest one. For the earliest date, there was less information from the
past (related to the forecast date) to be learned by the LSTM neural
network model. The use of LSTM for forecasting crop yield is still
limited on literature with only a few research studies exploring this
topic (Cunha et al., 2018; Wang et al., 2018; You et al., 2017).

Regardless the choice of the algorithm for modeling the yield-pre-
dictors empirical relationship, one of the main challenges on using sa-
tellite and weather data as proxies to yield at a regional level still re-
main on the crop field detection, mainly for countries where the crop
field boundary and crop-specific layers are not available. The main
outcome of this research was a soybean yield forecast model able to
predict yield at the municipality level in RS state, southern Brazil. This
model has proven to present a high accuracy even without using any
crop specific layer, with performance comparable to the models de-
veloped in the US by Johnson (2014) using the CDL as crop mask layer
and You et al. (2017) using a general world-wide land cover data de-
rived from MODIS (DAAC, 2015), and models developed in Brazil (for

Fig. 3. Upper panels (A to D) portraying the observed versus out-of-sample forecasted corn yield (forecast model with multi-temporal vegetation indices (VIs), land
surface temperature and precipitation) for different dates expressed in days of year (DOY). A black dashed line portrays the 1:1 line for the predicted-observed
relationship. The Long-Short Term Memory (LSTM) Neural Network used for DOY 32, 48 and 64. Multivariate OLS regression for DOY 16. In bottom panels (E to H)
variations in the mean square error (MSE) and its decomposition in squared bias and variance along the years for different dates expressed in DOY.

R.A. Schwalbert, et al. Agricultural and Forest Meteorology 284 (2020) 107886

5



four municipalities in Paraná state), by Figueiredo et al. (2016). Similar
results also have been reported for corn in the US, demonstrating that
models based on multi-temporal NDVI summary statistics had similar
performance either using a specific or general (e.g. summer crops,
cultivated crop) crop masks (Shao et al., 2015). It is important to note
that in the US Midwest and in RS state a corn-soybean rotation on an
annual basis is widely adopted. More importantly, previous studies
have shown that corn and soybean have relatively similar NDVI profiles
(Shao et al., 2010; Wardlow and Egbert, 2008). Therefore, the inclusion
of corn in the summer crop mask may still mimic the reflectance signal
derived for soybean field only. In RS, the soybean/corn cultivated area

is more towards to the soybean side (more frequency of this crop in the
rotation), therefore most of the pixels included in this analysis came
from soybean fields. The results presented in this paper represents a
great prospect for providing municipality-level soybean yield data in a
near real-time basis, contrasting with the frequency of the data cur-
rently released by SIDRA/IBGE, with the last yield estimation (2016/
2017 growing season) announced in 2018.

Furthermore, we extended our analysis pursuing to explore the
sensitivity of the time for the forecast model, considering that the im-
portance of a yield forecast is a balance between its accuracy and the
timing when the prediction is performed, and usually there is a trade-

Fig. 4. (A) Relationship between soy-
bean yield and years for the study re-
gion. (B) Relationship between re-
siduals for panel A and growing season
year. (C) Cumulative distribution
function estimated through the Monte
Carlo simulation for the yield re-
siduals. (D) Relationship between the
squared bias from the DOY 16 yield
forecast and the 1-High Density Region
(HDR) needed to overlap the con-
sidered year – 1-HDR measures how far
a specific year is from the mean of the
distribution towards the tails, putting
equal weights for both tails. (E)
Pearson's correlation between soybean
yield and average air temperature and
precipitation for different 8-days per-
iods during the soybean growing
season. (F) Multi-Gaussian probability
density function estimated through the
Monte Carlo simulation for average air
temperature and precipitation (from
DOY 360 to DOY 56) for the study re-
gion.
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off between the error and the date of the prediction (Bolton and
Friedl, 2013; Sakamoto et al., 2014; Shao et al., 2015; You et al., 2017).
Our results clearly reflected this trade-off since as the forecast is an-
ticipated during the growing season the error of the model tended to
rise. Despite of that, soybean yield still can be forecasted at munici-
pality-level in RS, Brazil at DOY 16 with a MAE of 0.42 Mg ha1, and a
RMSE of 0.53 Mg ha−1. The penalization in model accuracy for an-
ticipating the yield forecast was greater for years with extreme weather
(anomalies from the normal weather) but most of the error from the
MSE came from squared bias instead of σ2. The latter shows that even
for years with conditions highly adverse, the model was still able to
predict the most and least yielding municipalities even without accu-
rately predicting the absolute soybean yields.

Moreover, yield anomalies such as the ones reported in the 2005
soybean growing season in southern Brazil are unlikely to happen, and
the reported model performance (RMSE, MSE, and MAE) was highly
penalized by the errors associated with this growing season. After dis-
secting MSE in σ2 and squared bias for each one of the years, it became
quite clear that years with a lower probability to occur had the highest
squared bias, and the squared bias tended to decrease and get stable as
the years were settled towards the middle of the yield anomalies dis-
tribution (high-density region). The relationship between the prob-
ability of a specific type of year to occur and the squared bias is in fact
related to the lack of information about that event in the training da-
taset. Future applications of this model under conditions similar to
2005 year are expected to result in accurate soybean yield forecast,
because those events (weather variation) will be already present on the
training data. Despite the analysis has been developed for the state of
Rio Grande do Sul (Brazil), the general approach described in this
manuscript can potentially be applied to other regions around the globe
if a reasonable amount of survey data is available for building a reliable
crop mapping data layer. This could contribute to support agricultural
decisions in regard to managing and transferring risks within the
farming system. Consequently, helping farmers to plan interventions,
and enable governments and traders to adjust trading schemes, ulti-
mately, avoiding yield failures and food shortages.

5. Conclusions

Multi-temporal satellite imagery combined with weather data can

provide useful information, allowing the development of more precise
yield forecast models to monitor soybean yield at municipality level. A
decrease in the accuracy of the yield forecast model is expected by
anticipating the date for yield prediction before harvest, but this study
suggests that soybean yield can be predicted by DOY 16 (January 16)
with reasonable accuracy. This is approximately 70 days before harvest
in RS. Better accuracy (MAE of 0.24 Mg ha−1) can be obtained by DOY
48 (February 17) - 40 days before harvest in RS. The LSTM neural
network has been tested to have a better performance relative to
random forest or the multivariate OLS regressions, mainly for predic-
tions towards the end of the growing season plausible due to the
amount of data collected to compose the time series.

The training and validation approaches were adequate to test the
model performance in different weather and yield conditions. Model
performance for years with more adverse weather conditions (drama-
tically different from the normal years) and consequently with higher
yield anomalies related to the historical yield distribution is expected to
be inferior compared to the overall model accuracy for the remaining
years. Under extreme weather conditions, the increase in the error was
mainly associated with squared bias than σ2. For this reason, we expect
an increase in the model generalization for future extreme weather
events as more data is added into the training process. Despite the
analysis being developed for southern Brazil, the general approach
described in this study can be potentially applied to other geographical
regions around the globe with similar availability of data. This could
contribute to support agricultural decisions in regard to managing and
transferring risks within crop production and to improve overall crop
predictions for policy makers.
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Appendix A. Additional information about the data sources

Satellite imagery dates

The starting date was selected based on the soybean planting date and phenology based on the analysis of the soybean progress information and
satellite images for the last 14 years. Moreover, this period was selected in order to get images covering the time series when the soybean reflectance
and yield have the highest correlation (Johnson, 2014).

Climate Hazards Group Infrared Precipitation with Stations – CHIRPS

The CHIRPS provides precipitation data at ~5.5 km resolution by merging satellite and weather station information. This source of data uses
satellite in three ways: first, satellite means are used to produce high-resolution rainfall climatologies; second infrared Cold Cloud Duration fields are
used to estimate daily rainfall deviation from climatologies. Lastly, satellite precipitation fields are used to guide interpolation through local distance
decay functions (Cunha et al., 2018). Precipitation layers were re-projected and down-scaled in order to be combined with the rest of the collected
data. Precipitation was accumulated (summed) in an 8 days period to match with NDVI and LST derived from MODIS.

Appendix B. Criteria for selecting variables for composing the yield forecast model

The four criteria for variables being considering as predictors into the model were: i) availability in a spatial format with reasonable resolution,
allowing us to summarize the data in a representative way as relative to the geographical inference level (e.g., municipalities), ii) availability of
historical records at least until 2003, allowing us to train the models for all the years considered in the study, iii) all the data needs to be resealed in a
near real-time basis, or in other words, a short lead time between the information being collected (measured) and become available for downloading,
making the model able for updating the yield forecasts with a good frequency and periodicity, and iv) data availability in Google Earth Engine
platform to allow future model scalability.
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Appendix C. Rural Environmental Registry (Cadastro Ambiental Rural - CAR)

The CAR is an electronic national public registry, mandatory for all rural properties, with the purpose of integrating the environmental in-
formation related to the permanent preservation areas (restricted use), remnants of forests, other forms of native vegetation, and the consolidated
areas, composing a database for control, monitoring, environmental and economic planning against deforestation. For the purposes of this study, we
selected the consolidated rural areas, that is considered as an area of rural property with anthropogenic occupation preexisting on July 22, 2008.

Appendix D. Machine learning hyper-parameter tune

For random forest the considered hyper-parameter were the number of variables in the random subset at each node and the number of trees in the
forest. For the LSTM neural network, we tuned the number of hidden layers, number of neuron on each hidden layer, dropout rate, batch size,
activation function, learning rate, learning rate decay, and the gradient descent optimization algorithms. Moreover, the number of epoch was set to
60 and the training made use of the EarlyStopping callback function from the Keras (Chollet, 2015), with a patience parameter (the number of epochs
with no improvement after which training is stopped) equal to 20 to avoid over-fitting. Four years were randomly selected from the data: 2009,
2010, 2012 and 2016 for fine-tuning the machine learning hyper-parameters (sensitivity analyses showed that the changes in the selected years did
not significantly impact on the model parameterization). We performed a random search in order to find the best values for the hyper-parameters for
the two considered algorithms.

Appendix E. Additional information about the metrics used for model evaluation

The mean absolute error (MAE) represents the average magnitude of the errors while root mean squared error (RMSE) is a quadratic scoring rule
for the average magnitude of the error, and it is more useful when large errors are particularly undesirable. The RMSE will always be larger or equal
to the MAE; the greater difference between them, the greater the variance in the individual errors in the sample. If the RMSE equals to the MAE, then
all the errors are of the same magnitude. The mean squared error (MSE) measures the average of the squares of the errors and can be dissected into
two components, squared bias and variance (σ2), and this decomposition is helpful to understand if the model error has a more systematic or non-
systematic structure.

Appendix F. Effect on model performance metrics by adding land surface temperature (LST) and accumulated precipitation (PPT), in
addition to NDVI and EVI, as independent variables

Fig. 5
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